File: quantization_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (346 lines) | stat: -rw-r--r-- 11,606 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

import operator_benchmark as op_bench
import torch
import torch.ao.nn.quantized as nnq
import torch.ao.quantization as tq
import torch.nn as nn

"""Microbenchmarks for general quantization operations."""

# mode is used to show the direction of the benchmark:
# if 'Q', benchmark quantization, else dequantization

quantize_configs_short_dict = {
    'attr_names': ['C', 'M', 'N', 'dtype', 'mode'],
    'attrs': [
        [3, 512, 512, torch.quint8, 'Q'],
        [3, 512, 512, torch.quint8, 'D'],
    ],
    'tags': ['short'],
}

quantize_configs_long_dict = {
    'C': [3, 5, 8],  # this is reused for per-channel: avoid single channel test
    'M': [256, 1024],
    'N': [256, 1024],
    'dtype': [torch.quint8, torch.qint8, torch.qint32],
    'mode': ['D', 'Q'],
    'tags': ['long'],
}


quantize_per_tensor_configs_short = op_bench.config_list(
    **quantize_configs_short_dict
)

quantize_per_tensor_configs_long = op_bench.cross_product_configs(
    **quantize_configs_long_dict
)


class QuantizePerTensorBenchmark(op_bench.TorchBenchmarkBase):
    r"""Benchmarks both quantization and dequantization."""
    def init(self, C, M, N, dtype, mode):
        assert(mode in ('Q', 'D'))
        self.input = torch.rand(C, M, N)
        self.dtype = dtype
        self.op = nnq.Quantize(scale=1.0, zero_point=0, dtype=dtype)
        self.set_module_name('QuantizePerTensor')

        if mode == 'D':
            self.input = self.op(self.input)
            self.op = nnq.DeQuantize()
            self.set_module_name('DequantizePerTensor')

        self.inputs = {
            "input": self.input
        }

    def forward(self, input):
        return self.op(input)


op_bench.generate_pt_test(
    quantize_per_tensor_configs_short + quantize_per_tensor_configs_long,
    QuantizePerTensorBenchmark)

# === Per Channel quantization ===

quantize_per_channel_configs_short = op_bench.config_list(
    cross_product_configs={
        'axis': (0,)
    },
    **quantize_configs_short_dict
)

quantize_per_channel_configs_long = op_bench.cross_product_configs(
    axis=(0, 1, 2),
    **quantize_configs_long_dict
)

class QuantizePerChannelBenchmark(op_bench.TorchBenchmarkBase):
    r"""Benchmarks both quantization and dequantization."""
    def init(self, C, M, N, dtype, axis, mode):
        assert(mode in ('Q', 'D'))
        self.input = torch.rand(C, M, N)
        self.op = torch.quantize_per_channel

        channel_len = (C, M, N)[axis]

        self.kwargs = {
            'scales': torch.tensor([1.0] * channel_len),
            'zero_points': torch.tensor([0] * channel_len),
            'dtype': dtype,
            'axis': axis
        }

        self.set_module_name('QuantizePerChannel')

        if mode == 'D':
            self.input = self.op(self.input, **self.kwargs)

            def dequant(input, scales, zero_points, axis: int, dtype: int):
                return input.dequantize()
            self.op = dequant
            self.set_module_name('DequantizePerChannel')

        self.inputs = {
            "input": self.input,
            'scales': torch.tensor([1.0] * channel_len),
            'zero_points': torch.tensor([0] * channel_len),
            'axis': axis,
            'dtype': dtype
        }

    def forward(self, input, scales, zero_points, axis: int, dtype: int):
        return self.op(input, scales=scales, zero_points=zero_points, axis=axis, dtype=dtype)


op_bench.generate_pt_test(
    quantize_per_channel_configs_short + quantize_per_channel_configs_long,
    QuantizePerChannelBenchmark)

# === Fake Quantization ===
# Generated benchmarks names start with 'learnable_kernel' or 'original_kernel',
#    for ex. 'original_kernel_nbits8_cpu_N1_C1_H256_W256_zero_point_dtypetorch.int32_bwdall'

fake_quantize_configs_short_dict = {
    'attr_names': ['N', 'C', 'H', 'W', 'zero_point_dtype'],
    'attrs': [
        [1, 3, 512, 512, torch.int32],
    ],
    'tags': ['short']
}

fake_quantize_configs_long_dict = {
    'N': [1],
    'C': [1, 3, 8, 32],
    'H': [256, 1024],
    'W': [256, 1024],
    'zero_point_dtype': [torch.int32],
    'tags': ['long']
}

fake_quantize_configs_short = op_bench.config_list(
    cross_product_configs={
        'device': ('cpu', 'cuda'),
    },
    **fake_quantize_configs_short_dict
)

fake_quantize_configs_long = op_bench.cross_product_configs(
    device=('cpu', 'cuda'),
    **fake_quantize_configs_long_dict
)


class FakeQuantizeBenchmark(op_bench.TorchBenchmarkBase):
    r"""Benchmarks fake quantization with default parameters."""
    def init(self, N, C, H, W, zero_point_dtype, device):
        self.inputs = {
            "input": torch.rand(N, C, H, W).to(device)
        }
        self.op = tq.FakeQuantize().to(device)
        self.set_module_name('FakeQuantize')

    def forward(self, input):
        return self.op(input)


op_bench.generate_pt_test(
    fake_quantize_configs_short + fake_quantize_configs_long,
    FakeQuantizeBenchmark)


# op_type is used to describe the type of operator used in benchmarking:
# learnable_kernel represents the c++ kernel that can backpropagate on
# scale and zero point.
# original_kernel represents the original fake quantize c++ kernel.

def fakeQuantizePerTensorLearnableKernel(
    input, scale, zero_point,
    quant_min: int, quant_max: int
):
    return torch._fake_quantize_learnable_per_tensor_affine(input, scale, zero_point, quant_min, quant_max)

def fakeQuantizePerTensorOriginalKernel(
    input, scale, zero_point,
    quant_min: int, quant_max: int
):
    return torch.fake_quantize_per_tensor_affine(input, 1.0, 0, quant_min, quant_max)

fake_quantize_per_tensor_ops = op_bench.op_list(
    attrs=(
        ('learnable_kernel', fakeQuantizePerTensorLearnableKernel),
        ('original_kernel', fakeQuantizePerTensorOriginalKernel)
    ),
    attr_names=('op_name', 'op_func'),
)

fake_quantize_operator_configs_short = op_bench.config_list(
    cross_product_configs={
        'nbits': (4, 8),
        'device': ('cpu', 'cuda'),
    },
    **fake_quantize_configs_short_dict
)

fake_quantize_operator_configs_long = op_bench.cross_product_configs(
    nbits=(4, 8),
    device=('cpu', 'cuda'),
    **fake_quantize_configs_long_dict
)

# TODO(future PR) Combine config for floating point zero_point with other configs, once it is
# fully supported in all fakeQuant operators and devices for
# https://github.com/pytorch/pytorch/issues/61866.
fake_quantize_configs_long_dict_float_zero_point = fake_quantize_configs_long_dict.copy()
fake_quantize_configs_long_dict_float_zero_point['zero_point_dtype'] = [torch.float32, torch.half]

fake_quantize_operator_configs_long_float_zero_point = op_bench.cross_product_configs(
    nbits=(8,),
    device=('cpu', 'cuda'),
    **fake_quantize_configs_long_dict_float_zero_point
)

class FakeQuantizePerTensorBaseOpBenchmark(op_bench.TorchBenchmarkBase):
    r"""Benchmarks 3 different fake quantize per tensor operators."""
    def init(self, N, C, H, W, zero_point_dtype, nbits, device, op_func):
        self.quant_min = 0
        self.quant_max = 2 ** nbits - 1
        self.quant_range = 2 ** nbits
        self.input = nn.Parameter(torch.rand(N, C, H, W, dtype=torch.float, device=device), requires_grad=self.auto_set())
        self.scale = nn.Parameter(torch.tensor([1.]).to(device), requires_grad=self.auto_set())
        if op_func.__name__ == 'fakeQuantizePerChannelOriginalKernel':
            self.zero_point = nn.Parameter(torch.tensor([0.]).to(device).to(zero_point_dtype), requires_grad=self.auto_set())
        else:
            self.zero_point = nn.Parameter(torch.tensor([0.]).to(device), requires_grad=self.auto_set())

        self.inputs = {
            "input": self.input,
            "scale": self.scale,
            "zero_point": self.zero_point,
            "quant_min": self.quant_min,
            "quant_max": self.quant_max,
        }
        self.op_func = op_func

    def forward(
        self, input, scale, zero_point,
        quant_min: int, quant_max: int
    ):
        return self.op_func(input, scale, zero_point, quant_min, quant_max)

op_bench.generate_pt_tests_from_op_list(
    fake_quantize_per_tensor_ops,
    fake_quantize_operator_configs_short + fake_quantize_operator_configs_long,
    FakeQuantizePerTensorBaseOpBenchmark
)

op_bench.generate_pt_gradient_tests_from_op_list(
    fake_quantize_per_tensor_ops,
    fake_quantize_operator_configs_short + fake_quantize_operator_configs_long,
    FakeQuantizePerTensorBaseOpBenchmark
)

def fakeQuantizePerChannelLearnableKernel(
    input, scale, zero_point, axis: int,
    quant_min: int, quant_max: int
):
    return torch._fake_quantize_learnable_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max)

def fakeQuantizePerChannelOriginalKernel(
    input, scale, zero_point, axis: int,
    quant_min: int, quant_max: int
):
    return torch.fake_quantize_per_channel_affine(input, scale, zero_point, axis, quant_min, quant_max)

fake_quantize_per_channel_ops = op_bench.op_list(
    attrs=(
        ('learnable_kernel', fakeQuantizePerChannelLearnableKernel),
        ('original_kernel', fakeQuantizePerChannelOriginalKernel)
    ),
    attr_names=('op_name', 'op_func'),
)

fake_quantize_per_channel_float_zero_point_ops = op_bench.op_list(
    attrs=(
        ('original_kernel', fakeQuantizePerChannelOriginalKernel),
    ),
    attr_names=('op_name', 'op_func'),
)

class FakeQuantizePerChannelOpBenchmark(op_bench.TorchBenchmarkBase):
    r"""Benchmarks 3 different fake quantize per channel operators."""
    def init(self, N, C, H, W, zero_point_dtype, nbits, device, op_func):
        self.quant_min = 0
        self.quant_max = 2 ** nbits - 1
        self.quant_range = 2 ** nbits
        # Axis is chosen with respect to the number of channels: C.
        self.axis = 1
        self.input = nn.Parameter(torch.rand(N, C, H, W, dtype=torch.float, device=device, requires_grad=self.auto_set()))

        if op_func.__name__ == 'fakeQuantizePerChannelOriginalKernel':
            self.scale = torch.ones(C, device=device, dtype=torch.float32, requires_grad=False)
            self.zero_point = torch.zeros(C, device=device, dtype=zero_point_dtype, requires_grad=False)
        else:
            self.scale = nn.Parameter(torch.ones(C, device=device, dtype=torch.float32), requires_grad=self.auto_set())
            self.zero_point = nn.Parameter(torch.zeros(C, device=device, dtype=torch.float32), requires_grad=self.auto_set())

        self.inputs = {
            "input": self.input,
            "scale": self.scale,
            "zero_point": self.zero_point,
            "axis": self.axis,
            "quant_min": self.quant_min,
            "quant_max": self.quant_max,
        }

        self.op_func = op_func

    def forward(
        self, input, scale, zero_point,
        axis: int, quant_min: int, quant_max: int
    ):
        return self.op_func(input, scale, zero_point, axis, quant_min, quant_max)

op_bench.generate_pt_tests_from_op_list(
    fake_quantize_per_channel_ops,
    fake_quantize_operator_configs_short + fake_quantize_operator_configs_long,
    FakeQuantizePerChannelOpBenchmark
)

op_bench.generate_pt_tests_from_op_list(
    fake_quantize_per_channel_float_zero_point_ops,
    fake_quantize_operator_configs_long_float_zero_point,
    FakeQuantizePerChannelOpBenchmark
)

op_bench.generate_pt_gradient_tests_from_op_list(
    fake_quantize_per_channel_ops,
    fake_quantize_operator_configs_short + fake_quantize_operator_configs_long,
    FakeQuantizePerChannelOpBenchmark
)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()