1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
import operator_benchmark as op_bench
import torch
"""Microbenchmarks for quantized unary operators (point-wise and reduction)."""
# Configs for pointwise and reduction unary ops
qunary_ops_configs_short = op_bench.config_list(
attr_names=['M', 'N'],
attrs=[
[512, 512],
],
cross_product_configs={
'dtype': [torch.quint8],
},
tags=['short']
)
qunary_ops_configs_long = op_bench.cross_product_configs(
M=[256, 1024],
N=[256, 1024],
dtype=[torch.quint8, torch.qint8, torch.qint32],
tags=['long']
)
class QUnaryOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, dtype, op_func):
f_input = torch.rand(M, N)
scale = 1.0
zero_point = 0
self.inputs = {
"q_input": torch.quantize_per_tensor(f_input, scale=scale,
zero_point=zero_point,
dtype=dtype)
}
self.op_func = op_func
def forward(self, q_input):
return self.op_func(q_input)
# TODO: Uncomment the ops whenever they are implemented for quantized tensor.
qunary_ops_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
# ['q_abs', torch.abs],
# ['q_abs_', torch.abs_],
# ['q_acos', torch.acos],
# ['q_acos_', torch.acos_],
['q_argsort', torch.argsort],
# ['q_asin', torch.asin],
# ['q_asin_', torch.asin_],
# ['q_atan', torch.atan],
# ['q_atan_', torch.atan_],
# ['q_ceil', torch.ceil],
# ['q_ceil_', torch.ceil_],
['q_clone', torch.clone],
# ['q_cos', torch.cos],
# ['q_cos_', torch.cos_],
# ['q_cosh', torch.cosh],
# ['q_digamma', torch.digamma],
# ['q_erf', torch.erf],
# ['q_erf_', torch.erf_],
# ['q_erfc', torch.erfc],
# ['q_erfc_', torch.erfc_],
# ['q_erfinv', torch.erfinv],
# ['q_exp', torch.exp],
# ['q_exp_', torch.exp_],
# ['q_expm1', torch.expm1],
# ['q_expm1_', torch.expm1_],
# ['q_floor', torch.floor],
# ['q_floor_', torch.floor_],
# ['q_frac', torch.frac],
# ['q_frac_', torch.frac_],
# ['q_hardshrink', torch.hardshrink],
# ['q_lgamma', torch.lgamma],
# ['q_log', torch.log],
# ['q_log10', torch.log10],
# ['q_log10_', torch.log10_],
# ['q_log1p', torch.log1p],
# ['q_log1p_', torch.log1p_],
# ['q_log2', torch.log2],
# ['q_log2_', torch.log2_],
# ['q_log_', torch.log_],
['q_mean', torch.mean],
# ['q_neg', torch.neg],
# ['q_neg_', torch.neg_],
# ['q_reciprocal', torch.reciprocal],
# ['q_reciprocal_', torch.reciprocal_],
['q_relu', torch.relu],
['q_relu_', torch.relu_],
# ['q_round', torch.round],
# ['q_round_', torch.round_],
# ['q_rsqrt', torch.rsqrt],
# ['q_rsqrt_', torch.rsqrt_],
# ['q_sigmoid', torch.sigmoid],
# ['q_sigmoid_', torch.sigmoid_],
# ['q_sign', torch.sign],
# ['q_sin', torch.sin],
# ['q_sin_', torch.sin_],
# ['q_sinh', torch.sinh],
['q_sort', torch.sort],
# ['q_sqrt', torch.sqrt],
# ['q_sqrt_', torch.sqrt_],
# ['q_tan', torch.tan],
# ['q_tan_', torch.tan_],
# ['q_tanh', torch.tanh],
# ['q_tanh_', torch.tanh_],
# ['q_trunc', torch.trunc],
# ['q_trunc_', torch.trunc_],
# ['q_unique', torch.unique],
# ['q_zero_', torch.zero_],
# ['q_bernoulli_', lambda t: t.bernoulli_()],
# ['q_cauchy_', lambda t: t.cauchy_()],
# ['q_digamma_', lambda t: t.digamma_()],
# ['q_exponential_', lambda t: t.exponential_()],
# ['q_normal_', lambda t: t.normal_()],
# ['q_random_', lambda t: t.random_()],
# ['q_sign_', lambda t: t.sign_()],
# ['q_uniform_', lambda t: t.uniform_()],
# ['q_half', lambda t: t.half()],
# ['q_long', lambda t: t.long()],
],
)
op_bench.generate_pt_tests_from_op_list(qunary_ops_list,
qunary_ops_configs_short + qunary_ops_configs_long,
QUnaryOpBenchmark)
# === Other unary ops (i.e. the ones that need parameters as args) ===
# Configs for pointwise and reduction unary ops
qunary_ops_topk_configs_short = op_bench.config_list(
attr_names=['M', 'N', 'k'],
attrs=[
[512, 512, 5],
],
cross_product_configs={
'dtype': [torch.quint8],
},
tags=['short']
)
qunary_ops_topk_configs_long = op_bench.cross_product_configs(
M=[256, 1024],
N=[256, 1024],
k=[1, 3, 5],
dtype=[torch.quint8, torch.qint8, torch.qint32],
tags=['long']
)
class QTopkOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, dtype, k):
f_input = torch.rand(M, N)
scale = 1.0
zero_point = 0
self.inputs = {
"q_input": torch.quantize_per_tensor(f_input, scale=scale,
zero_point=zero_point,
dtype=dtype),
"k": k
}
self.set_module_name('qtopk')
def forward(self, q_input, k: int):
return torch.topk(q_input, k)
op_bench.generate_pt_test(qunary_ops_topk_configs_short + qunary_ops_topk_configs_long,
QTopkOpBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|