File: split_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (48 lines) | stat: -rw-r--r-- 1,079 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import operator_benchmark as op_bench
import torch


"""Microbenchmarks for Split operator"""


# Configs for PT Split operator
split_configs_short = op_bench.config_list(
    attr_names=["M", "N", "parts"],
    attrs=[
        [8, 8, 2],
        [256, 512, 2],
        [512, 512, 2],
    ],
    cross_product_configs={
        'device': ['cpu', 'cuda'],
    },
    tags=["short"],
)

split_configs_long = op_bench.cross_product_configs(
    M=[128, 1024],
    N=[128, 1024],
    parts=[2, 4],
    device=['cpu', 'cuda'],
    tags=['long']
)


class SplitBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, parts, device):
        self.inputs = {
            "input": torch.rand(M, N, device=device),
            "split_size": int(M * N / parts)
        }
        self.set_module_name('split')

    def forward(self, input, split_size: int):
        return torch.split(input, split_size)


op_bench.generate_pt_test(split_configs_short + split_configs_long,
                          SplitBenchmark)


if __name__ == "__main__":
    op_bench.benchmark_runner.main()