File: tensor_to_test.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (43 lines) | stat: -rw-r--r-- 1,441 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import operator_benchmark as op_bench
import torch

tensor_conversion_short_configs = op_bench.cross_product_configs(
    M=(8, 16, 32,),
    N=(16, 64, 128,),
    device=['cpu', 'cuda'],
    tags=['short'],
)

tensor_conversion_long_configs = op_bench.cross_product_configs(
    M=(64, 128, 256, 512,),
    N=(256, 512, 1024, 2048,),
    device=['cpu', 'cuda'],
    tags=['long'],
)

class FloatToHalfTensorConversionBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, device):
        self.inputs = {
            "input": torch.rand(M, N, device=device, requires_grad=False, dtype=torch.float)
        }

    def forward(self, input):
        return input.to(torch.half)

class HalfToFloatTensorConversionBenchmark(op_bench.TorchBenchmarkBase):
    def init(self, M, N, device):
        self.inputs = {
            "input": torch.rand(M, N, device=device, requires_grad=False, dtype=torch.half)
        }

    def forward(self, input):
        return input.to(torch.float)


op_bench.generate_pt_test(tensor_conversion_short_configs, FloatToHalfTensorConversionBenchmark)
op_bench.generate_pt_test(tensor_conversion_long_configs, FloatToHalfTensorConversionBenchmark)
op_bench.generate_pt_test(tensor_conversion_short_configs, HalfToFloatTensorConversionBenchmark)
op_bench.generate_pt_test(tensor_conversion_long_configs, HalfToFloatTensorConversionBenchmark)

if __name__ == "__main__":
    op_bench.benchmark_runner.main()