1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
|
import operator_benchmark as op_bench
import torch
"""Microbenchmarks for point-wise unary operator."""
# Configs for pointwise unary ops
unary_ops_configs_short = op_bench.config_list(
attr_names=['M', 'N'],
attrs=[
[512, 512],
],
cross_product_configs={
'device': ['cpu', 'cuda'],
},
tags=['short']
)
unary_ops_configs_long = op_bench.cross_product_configs(
M=[256, 1024],
N=[256, 1024],
device=['cpu', 'cuda'],
tags=['long']
)
class UnaryOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device, op_func):
self.inputs = {
"input": torch.rand(M, N, device=device)
}
self.op_func = op_func
def forward(self, input):
return self.op_func(input)
def bernoulli_(input):
return input.bernoulli_()
def cauchy_(input):
return input.cauchy_()
def digamma_(input):
return input.digamma_()
def exponential_(input):
return input.exponential_()
def normal_(input):
return input.normal_()
def random_(input):
return input.random_()
def sign_(input):
return input.sign_()
def uniform_(input):
return input.uniform_()
def half_(input):
return input.half()
def long_(input):
return input.long()
unary_ops_list = op_bench.op_list(
attr_names=['op_name', 'op_func'],
attrs=[
['abs', torch.abs],
['abs_', torch.abs_],
['acos', torch.acos],
['acos_', torch.acos_],
['argsort', torch.argsort],
['asin', torch.asin],
['asin_', torch.asin_],
['atan', torch.atan],
['atan_', torch.atan_],
['ceil', torch.ceil],
['ceil_', torch.ceil_],
['clone', torch.clone],
['cos', torch.cos],
['cos_', torch.cos_],
['cosh', torch.cosh],
['digamma', torch.digamma],
['erf', torch.erf],
['erf_', torch.erf_],
['erfc', torch.erfc],
['erfc_', torch.erfc_],
['erfinv', torch.erfinv],
['exp', torch.exp],
['exp_', torch.exp_],
['expm1', torch.expm1],
['expm1_', torch.expm1_],
['floor', torch.floor],
['floor_', torch.floor_],
['frac', torch.frac],
['frac_', torch.frac_],
['hardshrink', torch.hardshrink],
['lgamma', torch.lgamma],
['log', torch.log],
['log10', torch.log10],
['log10_', torch.log10_],
['log1p', torch.log1p],
['log1p_', torch.log1p_],
['log2', torch.log2],
['log2_', torch.log2_],
['log_', torch.log_],
['logit', torch.logit],
['logit_', torch.logit_],
['neg', torch.neg],
['neg_', torch.neg_],
['reciprocal', torch.reciprocal],
['reciprocal_', torch.reciprocal_],
['relu', torch.relu],
['relu_', torch.relu_],
['round', torch.round],
['round_', torch.round_],
['rsqrt', torch.rsqrt],
['rsqrt_', torch.rsqrt_],
['sigmoid', torch.sigmoid],
['sigmoid_', torch.sigmoid_],
['sign', torch.sign],
['sgn', torch.sgn],
['sin', torch.sin],
['sin_', torch.sin_],
['sinh', torch.sinh],
['sqrt', torch.sqrt],
['sqrt_', torch.sqrt_],
['square', torch.square],
['square_', torch.square_],
['tan', torch.tan],
['tan_', torch.tan_],
['tanh', torch.tanh],
['tanh_', torch.tanh_],
['trunc', torch.trunc],
['trunc_', torch.trunc_],
['unique', torch.functional._return_output],
['zero_', torch.zero_],
['bernoulli_', bernoulli_],
['cauchy_', cauchy_],
['digamma_', digamma_],
['exponential_', exponential_],
['normal_', normal_],
['random_', random_],
['sign_', sign_],
['uniform_', uniform_],
['half', half_],
['long', long_],
],
)
op_bench.generate_pt_tests_from_op_list(unary_ops_list,
unary_ops_configs_short + unary_ops_configs_long,
UnaryOpBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()
|