File: common.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (33 lines) | stat: -rw-r--r-- 804 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
import torch

NUM_REPEATS = 1000
NUM_REPEAT_OF_REPEATS = 1000


class SubTensor(torch.Tensor):
    pass


class WithTorchFunction:
    def __init__(self, data, requires_grad=False):
        if isinstance(data, torch.Tensor):
            self._tensor = data
            return

        self._tensor = torch.tensor(data, requires_grad=requires_grad)

    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        if kwargs is None:
            kwargs = {}

        return WithTorchFunction(args[0]._tensor + args[1]._tensor)


class SubWithTorchFunction(torch.Tensor):
    @classmethod
    def __torch_function__(cls, func, types, args=(), kwargs=None):
        if kwargs is None:
            kwargs = {}

        return super().__torch_function__(func, types, args, kwargs)