File: resnet_memory_profiler.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (22 lines) | stat: -rw-r--r-- 732 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import torch
import torchvision.models as models

import torch.autograd.profiler as profiler

for with_cuda in [False, True]:
    model = models.resnet18()
    inputs = torch.randn(5, 3, 224, 224)
    sort_key = "self_cpu_memory_usage"
    if with_cuda and torch.cuda.is_available():
        model = model.cuda()
        inputs = inputs.cuda()
        sort_key = "self_cuda_memory_usage"
        print("Profiling CUDA Resnet model")
    else:
        print("Profiling CPU Resnet model")

    with profiler.profile(profile_memory=True, record_shapes=True) as prof:
        with profiler.record_function("root"):
            model(inputs)

    print(prof.key_averages(group_by_input_shape=True).table(sort_by=sort_key, row_limit=-1))