1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
import torch
from pathlib import Path
from scipy import sparse
import math
def to_coo_scipy(x):
indices_1 = x._indices().numpy()
values_1 = x._values().numpy()
return sparse.coo_matrix((values_1, (indices_1[0], indices_1[1])),
shape=x.shape)
def sparse_grad_output(a, b):
c = torch.sparse.mm(a, b)
if c.is_sparse:
c2 = torch.rand_like(c.to_dense())
return c2.sparse_mask(c.coalesce())
else:
return torch.rand_like(c)
def read_matrix_params(path):
with open(path, 'r') as file:
line = file.readline()
nrows, ncols, nnz = map(lambda el: int(el), line.split(', '))
return (nrows, ncols), nnz
def csr_to_coo(indices, indptr, shape):
n_rows, n_cols = shape
cols = indices
rows = [0] * len(cols)
for i in range(n_rows):
for j in range(indptr[i], indptr[i + 1]):
rows[j] = i
return torch.tensor([rows, cols], dtype=torch.long)
def load_sparse_matrix(path, device):
with open(path, 'r') as file:
nrows, ncols, nnz = map(lambda el: int(el), file.readline().split(', '))
index_pointers = map(lambda el: int(el), file.readline().split())
indices = map(lambda el: int(el), file.readline().split())
index_pointers = list(index_pointers)
indices = list(indices)
data = torch.randn(nnz, dtype=torch.double)
shape = (nrows, ncols)
return torch.sparse_coo_tensor(csr_to_coo(indices, index_pointers, shape), data, shape, device=device)
def gen_vector(path, device):
with open(path, 'r') as file:
nrows, ncols, nnz = map(lambda el: int(el), file.readline().split(', '))
index_pointers = map(lambda el: int(el), file.readline().split())
indices = map(lambda el: int(el), file.readline().split())
return torch.randn(nrows, dtype=torch.double, device=device)
def gen_matrix(path, device):
with open(path, 'r') as file:
nrows, ncols, nnz = map(lambda el: int(el), file.readline().split(', '))
index_pointers = map(lambda el: int(el), file.readline().split())
indices = map(lambda el: int(el), file.readline().split())
return torch.randn(nrows, ncols, dtype=torch.double, device=device)
def load_spmv_dataset(dataset_path, hidden_size, sparsity, device, n_limit=math.inf):
"""load_spmv_dataset loads a DLMC dataset for a sparse matrix-vector multiplication (SPMV) performance test.
Args:
dataset_path:
path of the dataset from DLMC collection.
hidden_size
This value allows tensors of varying sizes.
sparsity:
This value allows tensors of varying sparsities.
device:
Whether to place the Tensor on a GPU or CPU.
n_limit:
This value allows a dataset with some limit size.
"""
current_folder_path = f"{dataset_path}/{sparsity}"
path = Path(current_folder_path)
files = path.glob('**/*.smtx')
print(dataset_path, hidden_size, sparsity)
index = 0
x_files, y_files = [], []
for f in files:
if index >= n_limit:
break
print('.', end='')
size, nnz = read_matrix_params(f.as_posix())
if size[1] == hidden_size:
x_files.append(f.as_posix())
if size[0] == hidden_size:
y_files.append(f.as_posix())
index += 1
print()
for fx, fy in zip(x_files, y_files):
x = load_sparse_matrix(fx, device)
y = gen_vector(fy, device)
yield (x, y)
def load_spmm_dataset(dataset_path, hidden_size, sparsity, spmm_type, device, n_limit=math.inf):
"""load_spmm_dataset loads a DLMC dataset for a sparse matrix-matrix multiplication (SPMM) performance test.
Args:
dataset_path:
path of the dataset from DLMC collection.
hidden_size
This value allows tensors of varying sizes.
sparsity:
This value allows tensors of varying sparsities.
spmm_type:
This value allows tensors for `sparse@sparse` or `sparse@dense` operations.
device:
Whether to place the Tensor on a GPU or CPU.
n_limit:
This value allows a dataset with some limit size.
"""
current_folder_path = f"{dataset_path}/{sparsity}"
path = Path(current_folder_path)
files = path.glob('**/*.smtx')
print(dataset_path, hidden_size, sparsity)
index = 0
x_files, y_files = [], []
for f in files:
if index >= n_limit:
break
print('.', end='')
size, nnz = read_matrix_params(f.as_posix())
if size[1] == hidden_size:
x_files.append(f.as_posix())
if size[0] == hidden_size:
y_files.append(f.as_posix())
index += 1
print()
for fx, fy in zip(x_files, y_files):
x = load_sparse_matrix(fx, device)
y = gen_matrix(fy, device) if spmm_type == 'sparse@dense' else load_sparse_matrix(fy, device)
yield (x, y)
def load_dlmc_dataset(dataset_path, operation, hidden_size, sparsity, device, requires_grad, n_limit=math.inf):
"""load_dlmc_dataset loads a DLMC dataset for a matmul performance test.
Args:
dataset_path:
path of the dataset from DLMC collection.
operation:
This value allows tensors for `sparse@sparse`|`sparse@dense`|`sparse@vector` operations.
hidden_size
This value allows tensors of varying sizes.
sparsity:
This value allows tensors of varying sparsities.
device:
Whether to place the Tensor on a GPU or CPU.
requires_grad:
Loads the dataset for backward test.
n_limit:
This value allows a dataset with some limit size.
"""
if operation == 'sparse@sparse' or operation == "sparse@dense":
collection = load_spmm_dataset(dataset_path, hidden_size, sparsity, operation, device, n_limit)
elif operation == 'sparse@vector':
collection = load_spmv_dataset(dataset_path, hidden_size, sparsity, device, n_limit)
scipy_vars = {}
backward_vars = {}
for x, y in collection:
if device == 'cpu':
scipy_vars = {
"sx": to_coo_scipy(x) if x.is_sparse else x.numpy(),
"sy": to_coo_scipy(y) if y.is_sparse else y.numpy(),
}
if not requires_grad:
dx = x.to_dense() if x.is_sparse else x
dy = y.to_dense() if y.is_sparse else y
else:
c = sparse_grad_output(x, y)
backward_vars = {
"sparse_grad_output": c,
"grad_output": c.to_dense() if c.is_sparse else c,
}
x.requires_grad_(True)
y.requires_grad_(True)
dx = x.to_dense().detach() if x.is_sparse else x.clone().detach()
dy = y.to_dense().detach() if y.is_sparse else y.clone().detach()
dx.requires_grad_(True)
dy.requires_grad_(True)
yield {
"x": x,
"y": y,
"dx": dx,
"dy": dy,
**scipy_vars,
**backward_vars
}
|