File: spmm.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (105 lines) | stat: -rw-r--r-- 3,279 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import sys
import torch
from utils import gen_sparse_csr, gen_sparse_coo, Event

def test_sparse_csr(m, n, k, nnz, test_count):
    start_timer = Event(enable_timing=True)
    stop_timer = Event(enable_timing=True)

    csr = gen_sparse_csr((m, k), nnz)
    mat = torch.randn(k, n, dtype=torch.double)

    times = []
    for _ in range(test_count):
        start_timer.record()
        csr.matmul(mat)
        stop_timer.record()
        times.append(start_timer.elapsed_time(stop_timer))

    return sum(times) / len(times)

def test_sparse_coo(m, n, k, nnz, test_count):
    start_timer = Event(enable_timing=True)
    stop_timer = Event(enable_timing=True)

    coo = gen_sparse_coo((m, k), nnz)
    mat = torch.randn(k, n, dtype=torch.double)

    times = []
    for _ in range(test_count):
        start_timer.record()
        coo.matmul(mat)
        stop_timer.record()
        times.append(start_timer.elapsed_time(stop_timer))

    return sum(times) / len(times)

def test_sparse_coo_and_csr(m, n, k, nnz, test_count):
    start = Event(enable_timing=True)
    stop = Event(enable_timing=True)

    coo, csr = gen_sparse_coo_and_csr((m, k), nnz)
    mat = torch.randn((k, n), dtype=torch.double)

    times = []
    for _ in range(test_count):
        start.record()
        coo.matmul(mat)
        stop.record()

        times.append(start.elapsed_time(stop))

        coo_mean_time = sum(times) / len(times)

        times = []
        for _ in range(test_count):
            start.record()
            csr.matmul(mat)
            stop.record()
            times.append(start.elapsed_time(stop))

            csr_mean_time = sum(times) / len(times)

    return coo_mean_time, csr_mean_time

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SpMM")

    parser.add_argument("--format", default='csr', type=str)
    parser.add_argument("--m", default='1000', type=int)
    parser.add_argument("--n", default='1000', type=int)
    parser.add_argument("--k", default='1000', type=int)
    parser.add_argument("--nnz_ratio", default='0.1', type=float)
    parser.add_argument("--outfile", default='stdout', type=str)
    parser.add_argument("--test_count", default='10', type=int)

    args = parser.parse_args()

    if args.outfile == 'stdout':
        outfile = sys.stdout
    elif args.outfile == 'stderr':
        outfile = sys.stderr
    else:
        outfile = open(args.outfile, "a")

    test_count = args.test_count
    m = args.m
    n = args.n
    k = args.k
    nnz_ratio = args.nnz_ratio

    nnz = int(nnz_ratio * m * k)
    if args.format == 'csr':
        time = test_sparse_csr(m, n, k, nnz, test_count)
    elif args.format == 'coo':
        time = test_sparse_coo(m, n, k, nnz, test_count)
    elif args.format == 'both':
        time_coo, time_csr = test_sparse_coo_and_csr(m, nnz, test_count)

    if args.format == 'both':
        print("format=coo", " nnz_ratio=", nnz_ratio, " m=", m, " n=", n, " k=", k, " time=", time_coo, file=outfile)
        print("format=csr", " nnz_ratio=", nnz_ratio, " m=", m, " n=", n, " k=", k, " time=", time_csr, file=outfile)
    else:
        print("format=", args.format, " nnz_ratio=", nnz_ratio, " m=", m, " n=", n, " k=", k, " time=", time,
              file=outfile)