File: deep_wide_pt_bench.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (210 lines) | stat: -rw-r--r-- 6,219 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#include <benchmark/benchmark.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include "deep_wide_pt.h"

const int embedding_size = 32;
const int num_features = 50;

using namespace torch;

static void BM_deep_wide_base(benchmark::State& state) {
  std::shared_ptr<DeepAndWide> net =
      std::make_shared<DeepAndWide>(num_features);

  const int batch_size = state.range(0);
  auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
  auto user_emb = torch::randn({batch_size, 1, embedding_size});
  auto wide = torch::randn({batch_size, num_features});
  // warmup
  net->forward(ad_emb_packed, user_emb, wide);
  for (auto _ : state) {
    net->forward(ad_emb_packed, user_emb, wide);
  }
}

static void BM_deep_wide_fast(benchmark::State& state) {
  std::shared_ptr<DeepAndWideFast> net =
      std::make_shared<DeepAndWideFast>(num_features);

  const int batch_size = state.range(0);
  auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
  auto user_emb = torch::randn({batch_size, 1, embedding_size});
  auto wide = torch::randn({batch_size, num_features});
  // warmup
  net->forward(ad_emb_packed, user_emb, wide);
  for (auto _ : state) {
    net->forward(ad_emb_packed, user_emb, wide);
  }
}

static void BM_deep_wide_jit_graph_executor(benchmark::State& state) {
  auto mod = getDeepAndWideSciptModel();

  const int batch_size = state.range(0);
  auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
  auto user_emb = torch::randn({batch_size, 1, embedding_size});
  auto wide = torch::randn({batch_size, num_features});

  std::vector<IValue> inputs({ad_emb_packed, user_emb, wide});

  TORCH_CHECK_EQ(setenv("TORCH_JIT_DISABLE_NEW_EXECUTOR", "1", 1), 0);

  mod.forward(inputs);
  for (auto _ : state) {
    mod.forward(inputs);
  }
}

static void BM_deep_wide_jit_profiling_executor(benchmark::State& state) {
  auto mod = getDeepAndWideSciptModel();

  const int batch_size = state.range(0);
  auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
  auto user_emb = torch::randn({batch_size, 1, embedding_size});
  auto wide = torch::randn({batch_size, num_features});

  std::vector<IValue> inputs({ad_emb_packed, user_emb, wide});

  TORCH_CHECK_EQ(unsetenv("TORCH_JIT_DISABLE_NEW_EXECUTOR"), 0);

  mod.forward(inputs);
  for (auto _ : state) {
    mod.forward(inputs);
  }
}

static void BM_deep_wide_static(benchmark::State& state) {
  auto mod = getDeepAndWideSciptModel();
  torch::jit::StaticModule smod(mod);

  const int batch_size = state.range(0);
  auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
  auto user_emb = torch::randn({batch_size, 1, embedding_size});
  auto wide = torch::randn({batch_size, num_features});

  std::vector<c10::IValue> inputs({ad_emb_packed, user_emb, wide});

  smod(inputs, {});
  for (auto _ : state) {
    smod(inputs, {});
  }
}

std::shared_ptr<torch::jit::StaticModule> getStaticModule() {
  static auto smod =
      std::make_shared<torch::jit::StaticModule>(getDeepAndWideSciptModel());
  return smod;
}

static void BM_deep_wide_static_threaded(benchmark::State& state) {
  auto sm = getStaticModule();
  torch::jit::StaticRuntime sr(*sm);

  const int batch_size = 1; // state.range(0);
  auto ad_emb_packed = torch::randn({batch_size, 1, embedding_size});
  auto user_emb = torch::randn({batch_size, 1, embedding_size});
  auto wide = torch::randn({batch_size, num_features});

  std::vector<c10::IValue> inputs({ad_emb_packed, user_emb, wide});

  sr(inputs, {});
  for (auto _ : state) {
    sr(inputs, {});
  }
}

static void BM_leaky_relu_const(benchmark::State& state) {
  auto mod = getLeakyReLUConstScriptModel();
  torch::jit::StaticModule smod(mod);

  const int batch_size = state.range(0);
  auto data = torch::randn({batch_size, num_features});
  std::vector<c10::IValue> inputs({data});

  smod(inputs, {});
  for (auto _ : state) {
    smod(inputs, {});
  }
}

static void BM_leaky_relu(benchmark::State& state) {
  auto mod = getLeakyReLUScriptModel();
  torch::jit::StaticModule smod(mod);

  const int batch_size = state.range(0);
  auto neg_slope = torch::randn(1);
  auto data = torch::randn({batch_size, num_features});
  std::vector<c10::IValue> inputs({data, neg_slope[0]});

  smod(inputs, {});
  for (auto _ : state) {
    smod(inputs, {});
  }
}

BENCHMARK(BM_leaky_relu)->RangeMultiplier(8)->Ranges({{1, 20}});
BENCHMARK(BM_leaky_relu_const)->RangeMultiplier(8)->Ranges({{1, 20}});

static void BM_signed_log1p(benchmark::State& state) {
  auto mod = getSignedLog1pModel();
  torch::jit::StaticModule smod(mod);

  const int num_elements = state.range(0);
  auto data = torch::randn({num_elements});
  std::vector<c10::IValue> inputs({data});

  smod(inputs, {});
  for (auto _ : state) {
    smod(inputs, {});
  }
}

BENCHMARK(BM_signed_log1p)->RangeMultiplier(8)->Ranges({{16, 65536}});

static void BM_long_static_memory_optimization(benchmark::State& state) {
  auto mod = getLongScriptModel();
  torch::jit::StaticModuleOptions opts;
  opts.optimize_memory = state.range(1);
  torch::jit::StaticModule smod(mod, false, opts);

  const auto N = state.range(0);
  auto a = torch::randn({N, N});
  auto b = torch::randn({N, N});
  auto c = torch::randn({N, N});
  std::vector<c10::IValue> inputs({a, b, c});

  smod(inputs, {});
  for (auto _ : state) {
    smod(inputs, {});
  }
}

BENCHMARK(BM_deep_wide_base)->RangeMultiplier(8)->Ranges({{1, 20}});
BENCHMARK(BM_deep_wide_fast)->RangeMultiplier(8)->Ranges({{1, 20}});

BENCHMARK(BM_deep_wide_jit_graph_executor)
    ->RangeMultiplier(8)
    ->Ranges({{1, 20}});

BENCHMARK(BM_deep_wide_jit_profiling_executor)
    ->RangeMultiplier(8)
    ->Ranges({{1, 20}});

BENCHMARK(BM_deep_wide_static)->RangeMultiplier(8)->Ranges({{1, 20}});
BENCHMARK(BM_deep_wide_static_threaded)->Threads(8);

BENCHMARK(BM_long_static_memory_optimization)
    ->Args({2 << 0, 0})
    ->Args({2 << 2, 0})
    ->Args({2 << 4, 0})
    ->Args({2 << 8, 0})
    ->Args({2 << 0, 1})
    ->Args({2 << 2, 1})
    ->Args({2 << 4, 1})
    ->Args({2 << 8, 1});

int main(int argc, char** argv) {
  c10::ParseCommandLineFlags(&argc, &argv);
  ::benchmark::Initialize(&argc, argv);
  ::benchmark::RunSpecifiedBenchmarks();
}