1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
// (c) Facebook, Inc. and its affiliates. Confidential and proprietary.
#include "test_utils.h"
#include <ATen/core/ivalue.h>
#include <gtest/gtest.h>
#include <torch/csrc/jit/ir/irparser.h>
#include <torch/csrc/jit/runtime/graph_executor.h>
#include <torch/csrc/jit/runtime/graph_iterator.h>
#include <torch/csrc/jit/runtime/static/impl.h>
#include <torch/csrc/jit/runtime/static/memory_planner.h>
#include <torch/csrc/jit/runtime/static/passes.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/allclose.h>
#endif
#include <memory>
#include <unordered_map>
using namespace torch::jit;
using namespace torch;
using c10::IValue;
namespace torch {
namespace jit {
namespace test {
namespace {
class GraphExecutorWrapper {
public:
GraphExecutorWrapper() = default;
explicit GraphExecutorWrapper(const std::shared_ptr<Graph>& graph)
: graph_exec_(graph, "") {}
c10::IValue operator()(const std::vector<c10::IValue>& args) {
Stack stack(args);
graph_exec_.run(stack);
if (stack.size() == 1) {
return stack[0];
}
return c10::ivalue::Tuple::create(stack);
}
private:
GraphExecutor graph_exec_;
};
// Test scripts passed to testStaticRuntime can either be IR or JIT.
// The logic for running the script and producing a corresponding StaticModule
// is a bit different for each case. This logic is encapsulated within concrete
// implementations of this class, and testStaticRuntime is only aware of this
// interface.
class StaticRuntimeTestContext {
public:
virtual ~StaticRuntimeTestContext() = default;
virtual IValue getExpected(const std::vector<IValue>& args) = 0;
virtual StaticModule makeStaticModule(
const StaticModuleOptions& opt) const = 0;
};
class ModuleStaticRuntimeTestContext : public StaticRuntimeTestContext {
public:
explicit ModuleStaticRuntimeTestContext(const std::string& source_jit)
: module_("module") {
module_.define(source_jit);
}
IValue getExpected(const std::vector<IValue>& args) override {
return module_.forward(args);
}
StaticModule makeStaticModule(const StaticModuleOptions& opt) const override {
return torch::jit::StaticModule(
module_, /* is_frozen */ false, opt, /* sample_inputs */ {});
}
private:
Module module_;
};
class GraphStaticRuntimeContext : public StaticRuntimeTestContext {
public:
explicit GraphStaticRuntimeContext(const std::string& source_ir) {
graph_ = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(source_ir, graph_.get(), vmap);
graph_exec_ = GraphExecutorWrapper(graph_);
}
IValue getExpected(const std::vector<IValue>& args) override {
return graph_exec_(args);
}
StaticModule makeStaticModule(const StaticModuleOptions& opt) const override {
return StaticModule(graph_, opt, /* sample_inputs */ {});
}
private:
std::shared_ptr<Graph> graph_;
GraphExecutorWrapper graph_exec_;
};
std::unique_ptr<StaticRuntimeTestContext> makeTestContext(
const std::string& source) {
try {
return std::make_unique<ModuleStaticRuntimeTestContext>(source);
// Could not parse as TorchScript, assume it's IR
} catch (const std::runtime_error&) {
return std::make_unique<GraphStaticRuntimeContext>(source);
}
}
void compareTensorLists(
const std::vector<IValue>& l, /* expects */
const std::vector<IValue>& r, /* values */
const bool use_allclose,
const bool use_equalnan) {
EXPECT_TRUE(l.size() == r.size());
for (int i = 0; i < l.size(); ++i) {
ASSERT_TRUE(l[i].isTensor());
ASSERT_TRUE(r[i].isTensor());
VLOG(2) << "expect " << i << ": \n" << l[i] << std::endl;
VLOG(2) << "output " << i << ": \n" << r[i] << std::endl;
if (!l[i].toTensor().defined()) {
EXPECT_TRUE(!r[i].toTensor().defined());
} else {
if (use_allclose) {
EXPECT_TRUE(at::allclose(
l[i].toTensor(),
r[i].toTensor(),
/*rtol*/ 1e-05,
/*atol*/ 1e-08,
use_equalnan));
} else {
EXPECT_TRUE(l[i].toTensor().equal(r[i].toTensor()));
}
}
}
}
} // namespace
void compareResults(
const IValue& expect,
const IValue& actual,
const bool use_allclose,
const bool use_equalnan) {
if (expect.isTensor()) {
VLOG(2) << "expect " << expect.toTensor() << std::endl;
VLOG(2) << "output " << actual.toTensor() << std::endl;
EXPECT_TRUE(actual.isTensor());
if (use_allclose) {
EXPECT_TRUE(at::allclose(
expect.toTensor(),
actual.toTensor(),
/*rtol*/ 1e-05,
/*atol*/ 1e-08,
use_equalnan));
} else {
EXPECT_TRUE(expect.toTensor().equal(actual.toTensor()));
}
return;
} else if (expect.isTuple()) {
EXPECT_TRUE(actual.isTuple());
auto lhs = expect.toTupleRef().elements();
auto rhs = actual.toTupleRef().elements();
EXPECT_TRUE(lhs.size() == rhs.size());
for (size_t i = 0; i < lhs.size(); i++) {
compareResults(lhs[i], rhs[i]);
}
} else if (expect.isList()) {
EXPECT_TRUE(actual.isList());
auto lhs = expect.toList();
auto rhs = actual.toList();
EXPECT_TRUE(lhs.size() == rhs.size());
for (size_t i = 0; i < lhs.size(); i++) {
compareResults(lhs[i], rhs[i]);
}
} else if (expect.isGenericDict()) {
EXPECT_TRUE(actual.isGenericDict());
auto lhs = expect.toGenericDict();
auto rhs = actual.toGenericDict();
EXPECT_TRUE(lhs.size() == rhs.size());
for (auto& lh : lhs) {
auto f = rhs.find(lh.key());
EXPECT_FALSE(f == rhs.end());
compareResults(lh.value(), f->value());
}
} else {
// fall back to the default comparison impl in IValue
EXPECT_TRUE(expect == actual);
}
}
at::Tensor getTensor(const at::IValue& ival) {
if (ival.isTensor()) {
return ival.toTensor();
} else if (ival.isTensorList()) {
auto tensor_vec = ival.toTensorVector();
TORCH_CHECK(tensor_vec.size() == 1);
return tensor_vec[0];
} else if (ival.isTuple()) {
auto tuple = ival.toTuple();
auto ivalue_vec = tuple->elements();
TORCH_CHECK(ivalue_vec.size() == 1);
return ivalue_vec[0].toTensor();
} else {
CAFFE_THROW("Unknown input IValue");
}
}
Node* getNodeWithKind(const StaticModule& smodule, const std::string& kind) {
return smodule.findNodeWithKindForTesting(kind);
}
Node* getNodeWithKind(std::shared_ptr<Graph>& graph, const std::string& kind) {
const auto symbol = c10::Symbol::fromQualString(kind);
DepthFirstGraphNodeIterator it(graph);
for (auto* node = it.next(); node != nullptr; node = it.next()) {
if (node->kind() == symbol) {
return node;
}
}
return nullptr;
}
bool hasNodeWithKind(const StaticModule& smodule, const std::string& kind) {
return getNodeWithKind(smodule, kind) != nullptr;
}
bool hasNodeWithKind(std::shared_ptr<Graph>& graph, const std::string& kind) {
return getNodeWithKind(graph, kind) != nullptr;
}
std::shared_ptr<Graph> getGraphFromScript(const std::string& jit_script) {
script::Module module("module");
module.define(jit_script);
Method method = module.get_method("forward");
return module.get_method("forward").graph();
}
std::shared_ptr<Graph> getGraphFromIR(const std::string& ir) {
auto graph = std::make_shared<Graph>();
std::unordered_map<std::string, Value*> vmap;
parseIR(ir, graph.get(), vmap);
return graph;
}
void compareResultsWithJIT(
StaticRuntime& runtime,
const std::shared_ptr<Graph>& graph,
const std::vector<c10::IValue>& args,
const bool use_allclose,
const bool use_equalnan) {
GraphExecutorWrapper graph_exec(graph);
auto expected = graph_exec(args);
auto actual = runtime(args, {});
runtime.check_for_memory_leak();
compareResults(expected, actual, use_allclose, use_equalnan);
}
void testStaticRuntime(
const std::string& source,
const std::vector<IValue>& args,
const std::vector<IValue>& args2,
const bool use_allclose,
const bool use_equalnan,
const bool check_resize) {
auto test_context = makeTestContext(source);
std::vector<IValue> args_tensors, args_copy;
for (const auto& ival : args) {
if (ival.isTensor()) {
args_tensors.emplace_back(ival);
const at::Tensor& t = ival.toTensor();
args_copy.emplace_back(t.clone());
}
}
auto expect = test_context->getExpected(args);
for (bool enable_out_variant : {true, false}) {
for (bool manage_output_tensors : {true, false}) {
for (bool enable_tensorexpr_fusion : {true, false}) {
if (!enable_out_variant && manage_output_tensors) {
continue;
}
// run static runtime three times
// 1st run: collect allocation profiles (args)
// 2nd run: exercise memory planner and resizing with args2
// 3rd run: run with args again
StaticModuleOptions opts{
.enable_out_variant = enable_out_variant,
.optimize_memory = enable_out_variant,
.manage_output_tensors = manage_output_tensors,
.enable_tensorexpr_fusion = enable_tensorexpr_fusion};
auto smodule = test_context->makeStaticModule(opts);
StaticRuntime runtime(smodule);
auto actual = runtime(args, {});
if (actual.isTensor()) {
EXPECT_GE(smodule.num_nodes(), 2)
<< "If we only have one node, the output of the op we are testing is "
<< "not being managed by the memory planner! A failure here "
<< "can typically be fixed by clone()ing the output of the test script.";
}
runtime.check_for_memory_leak();
// first run
VLOG(2) << "enable_out_variant: " << enable_out_variant;
VLOG(2) << "manage_output_tensors: " << manage_output_tensors;
VLOG(2) << "enable_tensorexpr_fusion: " << enable_tensorexpr_fusion;
VLOG(2) << "args: " << args;
VLOG(2) << "args2: " << args2;
VLOG(2) << "expect: " << expect;
VLOG(2) << "actual: " << actual;
compareResults(expect, actual, use_allclose, use_equalnan);
VLOG(2) << "first run comparison done";
if (manage_output_tensors) {
actual = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
if (!args2.empty()) {
auto* memory_planner = runtime.get_memory_planner();
size_t managed_bytes =
memory_planner ? memory_planner->total_managed() : 0;
// Run static runtime again with inputs of a different shape.
expect = test_context->getExpected(args2);
actual = runtime(args2, {});
runtime.check_for_memory_leak();
VLOG(2) << "comparing with args2";
compareResults(expect, actual, use_allclose, use_equalnan);
VLOG(2) << "second run comparison done";
if (manage_output_tensors) {
actual = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
size_t new_managed_bytes =
memory_planner ? memory_planner->total_managed() : 0;
if (check_resize && new_managed_bytes > 0) {
EXPECT_GT(new_managed_bytes, managed_bytes);
}
// Run static runtime again with an input of the shape observed during
// the profile run.
expect = test_context->getExpected(args);
actual = runtime(args, {});
runtime.check_for_memory_leak();
// third run
VLOG(2) << "comparing third run";
compareResults(expect, actual, use_allclose, use_equalnan);
VLOG(2) << "third run comparison done";
if (manage_output_tensors) {
actual = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
} else {
// run static runtime again to exercise the memory planner
// and allocate managed tensors.
actual = runtime(args, {});
runtime.check_for_memory_leak();
VLOG(2) << "comparing second run with same args";
compareResults(expect, actual, use_allclose, use_equalnan);
VLOG(2) << "second run comparison done";
if (manage_output_tensors) {
actual = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
// third run to use the allocated managed tensors.
actual = runtime(args, {});
runtime.check_for_memory_leak();
if (manage_output_tensors) {
actual = IValue();
runtime.deallocateOutputTensors();
runtime.checkOutputTensorMemoryLeaks();
}
}
}
}
}
// make sure inputs were not modified
VLOG(2) << "Printing out input tensors";
compareTensorLists(args_tensors, args_copy, use_allclose, use_equalnan);
}
bool hasProcessedNodeWithName(
torch::jit::StaticModule& smodule,
const char* name) {
return smodule.findNodeWithKindForTesting(name) != nullptr;
}
} // namespace test
} // namespace jit
} // namespace torch
|