1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
|
import argparse
import itertools
from . import benchmark
import os
from . import tensor_engine
from . import attention # noqa: F401
from . import broadcast # noqa: F401
from . import concat # noqa: F401
# from . import conv # noqa: F401
from . import elementwise # noqa: F401
from . import matmul # noqa: F401
# from . import normalization # noqa: F401
# from . import pooling # noqa: F401
from . import reduction # noqa: F401
from . import softmax # noqa: F401
from . import rnn_eltwise # noqa: F401
from . import swish # noqa: F401
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter,
description="""Benchmark operators in specific shapes.
Works only with Python3.\n A few examples:
* benchmark.py: runs all the default configs with all the benchmarks.
* benchmark.py reduce: runs all the default configs with all benchmark with a prefix 'reduce'
* benchmark.py layernorm_fwd_cpu_128_32_128_128: run a particular benchmark in that config""",
)
parser.add_argument(
"benchmark_names",
type=str,
default=None,
nargs="*",
help="name of the benchmark to run",
)
parser.add_argument(
"--device",
type=str,
default="cpu,cuda",
help="a comma separated list of device names",
)
parser.add_argument(
"--mode",
type=str,
default="fwd,both",
help="a comma separated list of running modes",
)
parser.add_argument(
"--dtype",
type=str,
default="float32",
help="a comma separated list of Data Types: {float32[default], float16}",
)
parser.add_argument(
"--input-iter",
type=str,
default=None,
help="a comma separated list of Tensor dimensions that includes a start, \
stop, and increment that can be constant or a power of 2 \
{start:stop:inc,start:stop:pow2}",
)
parser.add_argument(
"--engine",
type=str,
default="pt",
help="the underlying tensor engine. only pt for now",
)
parser.add_argument(
"--jit_mode",
type=str,
default="trace",
help="the jit mode to use: one of {trace, none}",
)
parser.add_argument(
"--cuda_pointwise_loop_levels",
type=int,
default=None,
help="num of loop levesl for Cuda pointwise operations: 2 or 3",
)
parser.add_argument(
"--cuda_pointwise_block_count",
type=int,
default=None,
help="num of block for Cuda pointwise operations",
)
parser.add_argument(
"--cuda_pointwise_block_size",
type=int,
default=None,
help="num of blocks for Cuda pointwise operations",
)
parser.add_argument(
"--cuda_fuser",
type=str,
default="te",
help="The Cuda fuser backend to use: one of {te, nvf, old, none}",
)
parser.add_argument(
"--output",
type=str,
default="stdout",
help="The output format of the benchmark run {stdout[default], json}",
)
parser.add_argument(
"--print-ir",
action='store_true',
help="Print the IR graph of the Fusion.",
)
parser.add_argument(
"--print-kernel",
action='store_true',
help="Print generated kernel(s).",
)
parser.add_argument(
"--no-dynamic-shape",
action='store_true',
help="Disable shape randomization in dynamic benchmarks.",
)
parser.add_argument(
"--cpu_fusion",
default=False,
action='store_true',
help="Enable CPU fusion.",
)
parser.add_argument(
"--cat_wo_conditionals",
default=False,
action='store_true',
help="Enable CAT wo conditionals.",
)
args = parser.parse_args()
if args.cuda_fuser == "te":
import torch
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_texpr_fuser_enabled(True)
torch._C._jit_override_can_fuse_on_gpu(True)
torch._C._get_graph_executor_optimize(True)
elif args.cuda_fuser == "old":
import torch
torch._C._jit_set_profiling_executor(False)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_override_can_fuse_on_gpu(True)
elif args.cuda_fuser == "nvf":
import torch
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_texpr_fuser_enabled(False)
torch._C._jit_set_nvfuser_enabled(True)
torch._C._get_graph_executor_optimize(True)
else :
raise ValueError("Undefined fuser: {}".format(args.cuda_fuser))
if args.cpu_fusion:
import torch
torch._C._jit_override_can_fuse_on_cpu(True)
else:
import torch
torch._C._jit_override_can_fuse_on_cpu(False)
if args.cat_wo_conditionals:
import torch
torch._C._jit_cat_wo_conditionals(True)
else:
import torch
torch._C._jit_cat_wo_conditionals(False)
def set_global_threads(num_threads):
os.environ["OMP_NUM_THREADS"] = str(num_threads)
os.environ["MKL_NUM_THREADS"] = str(num_threads)
os.environ["TVM_NUM_THREADS"] = str(num_threads)
os.environ["NNC_NUM_THREADS"] = str(num_threads)
devices = args.device.split(",")
# accept 'gpu' as an alternative as the 'cuda' device
devices = ["cuda" if device == "gpu" else device for device in devices]
cpu_count = 0
for index, device in enumerate(devices):
if device.startswith("cpu"):
cpu_count += 1
if cpu_count > 1:
raise ValueError(
"more than one CPU device is not allowed: %d" % (cpu_count)
)
if device == "cpu":
continue
num_threads_str = device[3:]
try:
# see if the device is in 'cpu1' or 'cpu4' format
num_threads = int(num_threads_str)
set_global_threads(num_threads)
devices[index] = "cpu"
except ValueError:
continue
modes = args.mode.split(",")
datatypes = args.dtype.split(",")
for index, dtype in enumerate(datatypes):
datatypes[index] = getattr(torch, dtype)
if not datatypes[index] :
raise AttributeError("DataType: {} is not valid!".format(dtype))
tensor_engine.set_engine_mode(args.engine)
def run_default_configs(bench_cls, allow_skip=True):
for mode, device, dtype, config in itertools.product(
modes, devices, datatypes, bench_cls.default_configs()
):
bench = bench_cls(mode, device, dtype, *config)
bench.output_type = args.output
bench.jit_mode = args.jit_mode
if not bench.is_supported():
if allow_skip:
continue
else:
raise ValueError(
"attempted to run an unsupported benchmark: %s" % (bench.desc())
)
bench.run(args)
def run_with_input_iter(bench_cls, input_iter, allow_skip=True):
tensor_dim_specs = input_iter.split(',')
tensor_dim_specs = [dim.split(':') for dim in tensor_dim_specs]
configs = []
for start, stop, inc in tensor_dim_specs:
dim_list = []
if inc == 'pow2' :
curr = int(start)
while curr <= int(stop) :
dim_list.append(curr)
curr <<= 1
elif inc == 'pow2+1' :
curr = int(start)
while curr <= int(stop) :
dim_list.append(curr)
curr -= 1
curr <<= 1
curr += 1
else :
dim_list = list(range(int(start), int(stop) + int(inc), int(inc)))
configs.append(dim_list)
configs = itertools.product(*configs)
for mode, device, dtype, config in itertools.product(
modes, devices, datatypes, list(configs)
):
bench = bench_cls(mode, device, dtype, *config)
bench.output_type = args.output
bench.jit_mode = args.jit_mode
if not bench.is_supported():
if allow_skip:
continue
else:
raise ValueError(
"attempted to run an unsupported benchmark: %s" % (bench.desc())
)
bench.run(args)
benchmark_classes = benchmark.benchmark_classes
if not args.benchmark_names:
# by default, run all the benchmarks
for benchmark_cls in benchmark_classes:
run_default_configs(benchmark_cls, allow_skip=True)
else:
for name in args.benchmark_names:
# if the name is the prefix of a benchmark class, run all the benchmarks for that class
match_class_name = False
for bench_cls in benchmark_classes:
if name in bench_cls.module():
match_class_name = True
if (args.input_iter is not None) and bench_cls.input_iterable() :
run_with_input_iter(bench_cls, args.input_iter, allow_skip=True)
else :
if args.input_iter is not None :
print("WARNING: Incompatible benchmark class called with input_iter arg: {}".format(name))
run_default_configs(bench_cls, allow_skip=True)
if match_class_name:
continue
# if not a class module, parse the config and call it that way
match_class_name = False
for bench_cls in benchmark_classes:
cls_module = bench_cls.module()
if name.startswith(cls_module):
match_class_name = True
if name[len(cls_module)] != "_":
raise ValueError("invalid name: %s" % (name))
config_str = name[(len(cls_module) + 1) :]
config = config_str.split("_")
if len(config) < 2:
raise ValueError("invalid config: %s" % config)
mode, device = config[0:2]
# TODO: make sure virtual devices such as 'cpu1' and 'cpu4' are supported.
if mode not in ["fwd", "both"]:
raise ValueError("invalid mode: %s" % (mode))
for i, entry in enumerate(config):
try:
value = int(entry)
config[i] = value
except ValueError:
pass
# TODO: output dtype in the config and parse it back from the str
bench = bench_cls(config[0], config[1], torch.float32, *config[2:])
bench.jit_mode = args.jit_mode
bench.output_type = args.output
bench.run(args)
if not match_class_name:
available_classes = ", ".join(
[bench_cls.module() for bench_cls in benchmark_classes]
)
raise ValueError(
"invalid name: %s\nAvailable benchmark classes:\n%s"
% (name, available_classes)
)
if __name__ == "__main__":
main()
|