1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
import contextlib
import numpy as np
import os
import time
from . import tensor_engine
import torch
import json
class Benchmark(object):
def __init__(self, mode, device, dtype):
self.mode = mode
self.deterministic = False
self.device = device
self.dtype = dtype
self.output_type = "stdout"
self.print_ir = False
self.print_kernel = False
if mode == "both":
self.requires_grad = True
elif mode == "fwd":
self.requires_grad = False
else:
raise ValueError("invalid mode: %s" % (mode))
self.result_grad = None
self.grad_variables = []
self.engine = tensor_engine.get_engine()
self.engine.reset(device)
# forward all member functions in self.engine to self
for method in dir(self.engine):
if not callable(getattr(self.engine, method)):
continue
# don't forward if this function is overriden here
if hasattr(self, method):
continue
# don't forward if it is a internal function
if method.startswith("_"):
continue
method_engine = getattr(self.engine, method)
setattr(self, method, method_engine)
def forward(self):
"""do one step worth of computation
"""
raise ValueError("this method should be reimplemented by subclass")
def check(self):
if not self.deterministic:
return
np.testing.assert_allclose(
self.reference(), self.numpy(self.compute()), atol=1e-2
)
def config(self):
"""returns an array for the current benchmark configs
"""
raise ValueError("this method should be reimplemented by subclass")
def desc(self):
"""return the description of the current benchmark
"""
config = self.config()
config_str = "_".join([str(x) for x in config])
device = self.device
if "NNC_NUM_THREADS" in os.environ:
num_threads_str = os.environ["NNC_NUM_THREADS"]
device += num_threads_str
return "%s: %s_%s_%s_%s" % (
self.engine.mode,
self.module(),
self.mode,
device,
config_str,
)
@staticmethod
def module():
raise ValueError("this method should be reimplemented by subclass")
def memory_workload(self):
raise ValueError("this method should be reimplemented by subclass")
def compute_workload(self):
"""return the number of scalar operations it takes to finish the tensor op"""
return None
@staticmethod
def input_iterable():
"""A benchmark child class should return true if it utilizes the input iter arg"""
return False
def dtype_to_bytes(self) :
return torch.tensor(0, dtype=self.dtype).element_size()
@staticmethod
def default_configs():
"""return a list of defualt configs for this benchmark"""
raise ValueError("this method should be reimplemented by subclass")
def is_supported(self):
return True
def rand(self, shape, device=None, dtype=None, requires_grad=False):
v = self.engine.rand(shape, device=device, dtype=dtype, requires_grad=requires_grad)
if requires_grad:
self.grad_variables.append(v)
return v
def nchw_rand(self, shape, device=None, requires_grad=False):
v = self.engine.nchw_rand(shape, device=device, requires_grad=requires_grad)
if requires_grad:
self.grad_variables.append(v)
return v
def compute(self):
if self.bm_jit:
return self.bm_jit(*self.inputs)
else:
return self.forward(*self.inputs)
def run(self, args):
self.print_ir = args.print_ir
if args.cuda_fuser == "old" :
torch._C._jit_override_can_fuse_on_gpu(True)
if args.print_kernel :
os.environ['PYTORCH_FUSION_DEBUG'] = '1'
return self.run_impl(True)
elif args.cuda_fuser == "te" :
torch._C._jit_set_texpr_fuser_enabled(True)
with cuda_pointwise_context(
args.cuda_pointwise_loop_levels,
args.cuda_pointwise_block_count,
args.cuda_pointwise_block_size,
):
return self.run_impl(True)
elif args.cuda_fuser == "nvf" :
torch._C._jit_set_nvfuser_enabled(True)
torch._C._jit_set_profiling_executor(True)
torch._C._jit_set_profiling_mode(True)
torch._C._jit_override_can_fuse_on_cpu(False)
torch._C._jit_override_can_fuse_on_gpu(False)
torch._C._jit_set_bailout_depth(20)
if args.print_kernel :
os.environ['PYTORCH_CUDA_FUSER_DEBUG'] = '1'
return self.run_impl(True)
else :
return self.run_impl(False)
def run_impl(self, use_fuser):
warmups = 10
if self.device == "cuda":
iters = 1000
else:
iters = 10
engine = tensor_engine.get_engine()
self.bm_jit = None
for i in range(warmups + iters):
if i == warmups:
if self.device == "cuda":
engine.sync_cuda()
time_start = time.time()
if i == 0:
if self.jit_mode == "trace" and use_fuser :
self.bm_jit = torch.jit.trace(
self.forward, example_inputs=self.inputs, check_trace=False
)
if callable(getattr(self, "reference", None)):
self.check()
else:
print("Warning: no reference result for ", self.module())
elif i == 1:
# The fusion graph is visible after the first iter is executed
if self.jit_mode == "trace" and use_fuser and self.print_ir :
print(self.bm_jit.graph_for(*self.inputs))
z = self.compute()
if self.mode == "both":
if self.result_grad is None:
self.result_grad = engine.rand_like(z)
engine.backward([z], [self.result_grad], self.grad_variables)
if self.device == "cuda":
engine.sync_cuda()
duration = time.time() - time_start
iter_time = duration / iters
memory_workload = self.memory_workload()
compute_workload = self.compute_workload()
result_dict = {
"desc": self.desc(),
"us": iter_time * 1e6,
"sol": memory_workload["sol"] * self.dtype_to_bytes() / iter_time / 1e9,
"algorithmic": memory_workload["algorithmic"] * self.dtype_to_bytes() / iter_time / 1e9,
}
if compute_workload:
result_dict["compute_workload"] = compute_workload / iter_time / 1e9
self.dump_result(result_dict)
def dump_result(self, result_dict):
if self.output_type == "json":
print(json.dumps(result_dict))
elif self.output_type == "stdout":
msg = "%s: %.2f us, SOL %.2f GB/s, algorithmic %.2f GB/s" % (
result_dict["desc"],
result_dict["us"],
result_dict["sol"],
result_dict["algorithmic"],
)
if "compute_workload" in result_dict:
msg += ", compute %.2f Gops/s" % result_dict["compute_workload"]
print(msg)
else:
raise Exception("Unknown output_type " + self.output_type)
@contextlib.contextmanager
def cuda_pointwise_context(loop_levels, block_count, block_size):
if loop_levels:
old_loop_levels = torch._C._jit_get_te_cuda_pointwise_loop_levels()
torch._C._jit_set_te_cuda_pointwise_loop_levels(loop_levels)
if block_count:
old_block_count = torch._C._jit_get_te_cuda_pointwise_block_count()
torch._C._jit_set_te_cuda_pointwise_block_count(block_count)
if block_size:
old_block_size = torch._C._jit_get_te_cuda_pointwise_block_size()
torch._C._jit_set_te_cuda_pointwise_block_size(block_size)
yield
if loop_levels:
torch._C._jit_set_te_cuda_pointwise_loop_levels(old_loop_levels)
if block_count:
torch._C._jit_set_te_cuda_pointwise_block_count(old_block_count)
if block_size:
torch._C._jit_set_te_cuda_pointwise_block_size(old_block_size)
# Auxiliary class to facilitate dynamic input shape
class DynamicShape(object):
r'''
An Auxiliary class for dynamic shape benchmarks
Pre-computes input with random shapes and also
modifies the compute method so in each call the
fuser sees a different input tensor shape
'''
# Number of random inputs in an instance
SAMPLE_SIZE = 100
def __init__(self, dynamic_range=1.2):
self._input_samples = []
self._input_sample_index = 0
self._dynamic_range = 1. / dynamic_range if dynamic_range > 1.0 else dynamic_range
self._enable_dynamic_shapes = True
# Returns the input test case that current index points to
@property
def inputs(self):
return self._input_samples[self._input_sample_index]
# An inputs assignment actually adds a test case in the class buffer
@inputs.setter
def inputs(self, val):
self._input_samples.append(val)
# Runs normal compute while increment test case index
def compute(self):
super().compute()
self._input_sample_index = (self._input_sample_index + 1) % self.SAMPLE_SIZE
# Defined by benchmark, the benchmark needs to specify the input
# tensor construction in this method, essentially the same way
# a benchmark creates the inputs list in the initializer
def instantiate_input(self):
raise NotImplementedError
# Instantiate random shaped inputs and start the benchmark run
def run(self, args):
# force disable dynamic shape from command line
if args.no_dynamic_shape:
self._enable_dynamic_shapes = False
self.load_inputs()
super().run(args)
# pre-compute inputs so the creations of random tensors
# do not add to the compute time
def load_inputs(self):
for i in range(self.SAMPLE_SIZE - 1):
self.instantiate_input()
# returns a randomized shape
def rand_shape(self, shape):
if not self._enable_dynamic_shapes:
return shape
ratios = np.random.uniform(self._dynamic_range, 1.0, len(shape))
dyn_shape = list(
np.multiply(shape, ratios).astype(int)
)
return dyn_shape
benchmark_classes = []
def register_benchmark_class(benchmark_cls):
benchmark_classes.append(benchmark_cls)
|