File: matmul.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (63 lines) | stat: -rw-r--r-- 1,667 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from . import benchmark
import numpy as np


class MatMulBench(benchmark.Benchmark):
    def __init__(self, mode, device, dtype, B, M, N, K):
        super().__init__(mode, device, dtype)
        self.B = B
        self.M = M
        self.N = N
        self.K = K
        self.d1 = self.rand([B, M, N], device=device, dtype=dtype, requires_grad=self.requires_grad)
        self.d2 = self.rand([B, N, K], device=device, dtype=dtype, requires_grad=self.requires_grad)
        self.inputs = [self.d1, self.d2]

    def forward(self, d1, d2):
        y = self.matmul(d1, d2)
        return y

    def reference(self):
        return np.matmul(self.numpy(self.d1), self.numpy(self.d2))

    def config(self):
        return [self.B, self.M, self.N, self.K]

    @staticmethod
    def module():
        return "batch_matmul"

    def memory_workload(self):
        if self.mode == "fwd":
            sol_count = 1
            algorithmic_count = 1
        else:
            sol_count = 1 + 1
            algorithmic_count = 1 + (1 + 1)

        buffer_size = (
            self.B * self.M * self.N
            + self.B * self.M * self.N
            + self.B * self.N * self.K
        )
        return {
            "sol": buffer_size * sol_count,
            "algorithmic": buffer_size * algorithmic_count,
        }

    def compute_workload(self):
        if self.mode == "fwd":
            count = 1
        else:
            count = 1 + (1 + 1)

        op_count = 2 * self.B * self.M * self.N * self.K

        return op_count * count

    @staticmethod
    def default_configs():
        return [[128, 64, 128, 256]]


benchmark.register_benchmark_class(MatMulBench)