File: pt_engine.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (75 lines) | stat: -rw-r--r-- 2,304 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import torch


class TorchTensorEngine(object):
    def rand(self, shape, device=None, dtype=None, requires_grad=False):
        return torch.rand(shape, device=device, dtype=dtype, requires_grad=requires_grad)

    def randn(self, shape, device=None, dtype=None, requires_grad=False):
        return torch.randn(shape, device=device, dtype=dtype, requires_grad=requires_grad)

    def nchw_rand(self, shape, device=None, requires_grad=False):
        return self.rand(shape, device=device, requires_grad=requires_grad)

    def reset(self, _):
        pass

    def rand_like(self, v):
        return torch.rand_like(v)

    def numpy(self, t):
        return t.cpu().numpy()

    def mul(self, t1, t2):
        return t1 * t2

    def add(self, t1, t2):
        return t1 + t2

    def batch_norm(self, data, mean, var, training):
        return torch.nn.functional.batch_norm(data, mean, var, training=training)

    def instance_norm(self, data):
        return torch.nn.functional.instance_norm(data)

    def layer_norm(self, data, shape):
        return torch.nn.functional.layer_norm(data, shape)

    def sync_cuda(self):
        torch.cuda.synchronize()

    def backward(self, tensors, grad_tensors, _):
        torch.autograd.backward(tensors, grad_tensors=grad_tensors)

    def sum(self, data, dims):
        return torch.sum(data, dims)

    def softmax(self, data, dim=None, dtype=None):
        return torch.nn.functional.softmax(data, dim, dtype)

    def cat(self, inputs, dim=0):
        return torch.cat(inputs, dim=dim)

    def clamp(self, data, min, max):
        return torch.clamp(data, min=min, max=max)

    def relu(self, data):
        return torch.nn.functional.relu(data)

    def tanh(self, data):
        return torch.tanh(data)

    def max_pool2d(self, data, kernel_size, stride=1):
        return torch.nn.functional.max_pool2d(data, kernel_size, stride=stride)

    def avg_pool2d(self, data, kernel_size, stride=1):
        return torch.nn.functional.avg_pool2d(data, kernel_size, stride=stride)

    def conv2d_layer(self, ic, oc, kernel_size, groups=1):
        return torch.nn.Conv2d(ic, oc, kernel_size, groups=groups)

    def matmul(self, t1, t2):
        return torch.matmul(t1, t2)

    def to_device(self, module, device):
        return module.to(device)