File: reduction.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (278 lines) | stat: -rw-r--r-- 8,349 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
from . import benchmark


class ReduceBench(benchmark.Benchmark):
    def __init__(self, mode, device, dtype, case, M, N, K, skip_input_transform):
        super().__init__(mode, device, dtype)
        self.case = case
        self.M = M
        self.N = N
        self.K = K
        self._set_skip_input_transform(skip_input_transform)

        self.inputs = [self.randn(
            [M, N, K], device=device, dtype=dtype, requires_grad=self.requires_grad
        )]
        if case == "row":
            self.dims = [1, 2]
        elif case == "mid":
            self.dims = [0, 2]
        elif case == "col":
            self.dims = [0, 1]
        elif case == "full":
            self.dims = [0, 1, 2]
        else:
            raise ValueError("invalid case: %s" % case)

    def forward(self, inputs):
        if self.skip_input_transform:
            x = inputs
        else:
            x = self.add(inputs, 0.001)
        y = self.sum(x, self.dims)
        return y

    def config(self):
        if self.case == "full":
            return [self.M * self.N * self.K, self._skip_input_transform_str()]
        return [self.M, self.N, self.K, self._skip_input_transform_str()]

    @staticmethod
    def default_configs():
        return [
            # [512, 512, 512],
            [512, 64, 512, "s0"],
        ]

    @staticmethod
    def module():
        return "reduce"

    def memory_workload(self):
        if self.mode == "fwd":
            sol_count = 1
            algorithmic_count = 1
        else:
            sol_count = (1) + (1)
            algorithmic_count = 1 + 1

        buffer_size = self.M * self.N * self.K
        return {
            "sol": buffer_size * sol_count,
            "algorithmic": buffer_size * algorithmic_count,
        }

    def _set_skip_input_transform(self, input_str):
        # In the test setting, s1 will skip the input transformation, and s0 will not.
        if input_str == "s0":
            self.skip_input_transform = False
        elif input_str == "s1":
            self.skip_input_transform = True
        else:
            raise ValueError('invalid skip_input_transform: %s' % (input_str))

    def _skip_input_transform_str(self):
        if self.skip_input_transform:
            return "s1"
        else:
            return "s0"


class ReduceRowBench(ReduceBench):
    def __init__(self, mode, device, dtype, M, N, K, skip_input_transform):
        super(ReduceRowBench, self).__init__(mode, device, dtype, "row", M, N, K, skip_input_transform)

    @staticmethod
    def module():
        return "reduce_row"


class ReduceMidBench(ReduceBench):
    def __init__(self, mode, device, dtype, M, N, K, skip_input_transform):
        super(ReduceMidBench, self).__init__(mode, device, dtype, "mid", M, N, K, skip_input_transform)

    @staticmethod
    def module():
        return "reduce_mid"


class ReduceColBench(ReduceBench):
    def __init__(self, mode, device, dtype, M, N, K, skip_input_transform):
        super(ReduceColBench, self).__init__(mode, device, dtype, "col", M, N, K, skip_input_transform)

    @staticmethod
    def module():
        return "reduce_col"


class ReduceFullBench(ReduceBench):
    def __init__(self, mode, device, dtype, M, skip_input_transform):
        super(ReduceFullBench, self).__init__(mode, device, dtype, "full", M, 1, 1, skip_input_transform)

    def config(self):
        return [self.M * self.N * self.K, self._skip_input_transform_str()]

    @staticmethod
    def default_configs():
        return [
            [1 << 24, "s1"],
        ]

    @staticmethod
    def module():
        return "reduce_full"


class Reduce2DBench(benchmark.Benchmark):
    '''
    A benchmark class to validate 2 dimensional reduction performance.
    Only a simple add is fused to induce the fuser and isolate reduction perf.
    '''
    def __init__(self, mode, device, dtype, red_dim, dim0, dim1):
        super().__init__(mode, device, dtype)
        self.red_dim = red_dim
        self.dim0 = dim0
        self.dim1 = dim1

        self.inputs = [self.randn(
            [dim0, dim1], device=device, dtype=dtype, requires_grad=self.requires_grad
        )]

        if red_dim != 0 and red_dim != 1 :
            raise ValueError("invalid reduction dimension: {}".format(red_dim))

    def forward(self, inputs):
        x = self.add(inputs, 0.001)
        y = self.sum(x, [self.red_dim])
        return y

    def config(self):
        return [self.red_dim, self.dim0, self.dim1]

    @staticmethod
    def default_configs():
        return [
            [1, 640, 524288],
        ]

    @staticmethod
    def module():
        return "reduce2d"

    @staticmethod
    def input_iterable() :
        return True

    def memory_workload(self):
        assert self.mode == "fwd", "Only the forward operation is modeled!"

        buffer_size = self.dim0 * self.dim1
        if self.red_dim == 0 :
            buffer_size += self.dim1
        else :
            buffer_size += self.dim0
        return {
            "sol": buffer_size,
            "algorithmic": buffer_size,
        }

class Reduce2DInnerBench(Reduce2DBench):
    def __init__(self, mode, device, dtype, dim0, dim1):
        super(Reduce2DInnerBench, self).__init__(mode, device, dtype, 1, dim0, dim1)

    @staticmethod
    def default_configs():
        parent_config = Reduce2DBench.default_configs()[0]
        return [parent_config[1:]]

    def config(self):
        parent_config = super(Reduce2DInnerBench, self).config()
        return parent_config[1:]

    @staticmethod
    def module():
        return "reduce2d_inner"

class Reduce2DOuterBench(Reduce2DBench):
    def __init__(self, mode, device, dtype, dim0, dim1):
        super(Reduce2DOuterBench, self).__init__(mode, device, dtype, 0, dim0, dim1)

    @staticmethod
    def default_configs():
        parent_config = Reduce2DBench.default_configs()[0]
        return [parent_config[1:]]

    def config(self):
        parent_config = super(Reduce2DOuterBench, self).config()
        return parent_config[1:]

    @staticmethod
    def module():
        return "reduce2d_outer"

benchmark.register_benchmark_class(ReduceRowBench)
benchmark.register_benchmark_class(ReduceMidBench)
benchmark.register_benchmark_class(ReduceColBench)
benchmark.register_benchmark_class(Reduce2DInnerBench)
benchmark.register_benchmark_class(Reduce2DOuterBench)
benchmark.register_benchmark_class(ReduceFullBench)

class DynamicReduce2DBench(benchmark.DynamicShape, Reduce2DBench):
    '''
    A benchmark class to validate 2 dimensional reduction performance.
    Only a simple add is fused to induce the fuser and isolate reduction perf.
    '''

    def __init__(self, mode, device, dtype, red_dim, dim0, dim1):
        benchmark.DynamicShape.__init__(self)
        Reduce2DBench.__init__(self, mode, device, dtype, red_dim, dim0, dim1)

    def instantiate_input(self):
        dim0, dim1 = self.rand_shape([self.dim0, self.dim1])

        self.inputs = [self.randn(
            [dim0, dim1], device=self.device, dtype=self.dtype, requires_grad=self.requires_grad
        )]

    @staticmethod
    def module():
        return "dynamicreduce2d"


class DynamicReduce2DInnerBench(DynamicReduce2DBench):
    def __init__(self, mode, device, dtype, dim0, dim1):
        super().__init__(mode, device, dtype, 1, dim0, dim1)

    @staticmethod
    def default_configs():
        parent_config = DynamicReduce2DBench.default_configs()[0]
        return [parent_config[1:]]

    def config(self):
        parent_config = super(DynamicReduce2DInnerBench, self).config()
        return parent_config[1:]

    @staticmethod
    def module():
        return "reduce2d_dynamic_inner"


class DynamicReduce2DOuterBench(DynamicReduce2DBench):
    def __init__(self, mode, device, dtype, dim0, dim1):
        super().__init__(mode, device, dtype, 0, dim0, dim1)

    @staticmethod
    def default_configs():
        parent_config = DynamicReduce2DBench.default_configs()[0]
        return [parent_config[1:]]

    def config(self):
        parent_config = super(DynamicReduce2DInnerBench, self).config()
        return parent_config[1:]

    @staticmethod
    def module():
        return "reduce2d_dynamic_outer"

benchmark.register_benchmark_class(DynamicReduce2DInnerBench)
benchmark.register_benchmark_class(DynamicReduce2DOuterBench)