1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
"""Scribe Uploader for Pytorch Benchmark Data
Currently supports data in pytest-benchmark format but can be extended.
New fields can be added just by modifying the schema in this file, schema
checking is only here to encourage reusing existing fields and avoiding typos.
"""
import argparse
import time
import json
import os
import requests
import subprocess
from collections import defaultdict
class ScribeUploader:
def __init__(self, category):
self.category = category
def format_message(self, field_dict):
assert 'time' in field_dict, "Missing required Scribe field 'time'"
message = defaultdict(dict)
for field, value in field_dict.items():
if field in self.schema['normal']:
message['normal'][field] = str(value)
elif field in self.schema['int']:
message['int'][field] = int(value)
elif field in self.schema['float']:
message['float'][field] = float(value)
else:
raise ValueError("Field {} is not currently used, "
"be intentional about adding new fields".format(field))
return message
def _upload_intern(self, messages):
for m in messages:
json_str = json.dumps(m)
cmd = ['scribe_cat', self.category, json_str]
subprocess.run(cmd)
def upload(self, messages):
if os.environ.get('SCRIBE_INTERN'):
return self._upload_intern(messages)
access_token = os.environ.get("SCRIBE_GRAPHQL_ACCESS_TOKEN")
if not access_token:
raise ValueError("Can't find access token from environment variable")
url = "https://graph.facebook.com/scribe_logs"
r = requests.post(
url,
data={
"access_token": access_token,
"logs": json.dumps(
[
{
"category": self.category,
"message": json.dumps(message),
"line_escape": False,
}
for message in messages
]
),
},
)
print(r.text)
r.raise_for_status()
class PytorchBenchmarkUploader(ScribeUploader):
def __init__(self):
super().__init__('perfpipe_pytorch_benchmarks')
self.schema = {
'int': [
'time', 'rounds',
],
'normal': [
'benchmark_group', 'benchmark_name', 'benchmark_executor',
'benchmark_fuser', 'benchmark_class', 'benchmark_time',
'pytorch_commit_id', 'pytorch_branch', 'pytorch_commit_time', 'pytorch_version',
'pytorch_git_dirty',
'machine_kernel', 'machine_processor', 'machine_hostname',
'circle_build_num', 'circle_project_reponame',
],
'float': [
'stddev', 'min', 'median', 'max', 'mean',
]
}
def post_pytest_benchmarks(self, pytest_json):
machine_info = pytest_json['machine_info']
commit_info = pytest_json['commit_info']
upload_time = int(time.time())
messages = []
for b in pytest_json['benchmarks']:
test = b['name'].split('[')[0]
net_name = b['params']['net_name']
benchmark_name = '{}[{}]'.format(test, net_name)
executor = b['params']['executor']
fuser = b['params']['fuser']
m = self.format_message({
"time": upload_time,
"benchmark_group": b['group'],
"benchmark_name": benchmark_name,
"benchmark_executor": executor,
"benchmark_fuser": fuser,
"benchmark_class": b['fullname'],
"benchmark_time": pytest_json['datetime'],
"pytorch_commit_id": commit_info['id'],
"pytorch_branch": commit_info['branch'],
"pytorch_commit_time": commit_info['time'],
"pytorch_version": None,
"pytorch_git_dirty": commit_info['dirty'],
"machine_kernel": machine_info['release'],
"machine_processor": machine_info['processor'],
"machine_hostname": machine_info['node'],
"circle_build_num": os.environ.get("CIRCLE_BUILD_NUM"),
"circle_project_reponame": os.environ.get("CIRCLE_PROJECT_REPONAME"),
"stddev": b['stats']['stddev'],
"rounds": b['stats']['rounds'],
"min": b['stats']['min'],
"median": b['stats']['median'],
"max": b['stats']['max'],
"mean": b['stats']['mean'],
})
messages.append(m)
self.upload(messages)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument("--pytest_bench_json", type=argparse.FileType('r'),
help='Upload json data formatted by pytest-benchmark module')
args = parser.parse_args()
if args.pytest_bench_json:
benchmark_uploader = PytorchBenchmarkUploader()
json_data = json.load(args.pytest_bench_json)
benchmark_uploader.post_pytest_benchmarks(json_data)
|