1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <string>
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/core/operator.h"
#include "caffe2/utils/string_utils.h"
#include "c10/util/string_utils.h"
#include <c10/util/irange.h>
using std::map;
using std::shared_ptr;
using std::string;
using std::vector;
template <typename ContextType, typename TensorType>
void writeTextOutput(
TensorType* tensor,
const string& output_prefix,
const string& name,
int index,
int num_blobs) {
if (index >= num_blobs) {
return;
}
string filename = name;
std::replace(filename.begin(), filename.end(), '/', '_');
string output_name = output_prefix + "/" + filename + ".txt";
caffe2::TensorSerializer ser;
caffe2::BlobProto blob_proto;
ser.Serialize(
*tensor, output_name, blob_proto.mutable_tensor(), 0, tensor->numel());
blob_proto.set_name(output_name);
blob_proto.set_type("Tensor");
CAFFE_ENFORCE(blob_proto.has_tensor());
caffe2::TensorProto tensor_proto = blob_proto.tensor();
int dims_size = tensor_proto.dims_size();
long long elem_dim_size =
dims_size > 1 ? tensor_proto.dims(1) : tensor_proto.dims(0);
for (const auto i : c10::irange(2, dims_size)) {
elem_dim_size *= tensor_proto.dims(i);
}
std::vector<std::string> lines;
std::string dims;
for (const auto i : c10::irange(dims_size)) {
int dim = tensor_proto.dims(i);
if (i > 0) {
dims += ", ";
}
dims += c10::to_string(dim);
}
lines.push_back(dims);
std::stringstream line;
if (tensor_proto.data_type() == caffe2::TensorProto::FLOAT) {
auto start = tensor_proto.float_data().begin();
auto end = tensor_proto.float_data().end();
copy(start, end, std::ostream_iterator<float>(line, ","));
} else if (tensor_proto.data_type() == caffe2::TensorProto::INT32) {
auto start = tensor_proto.int32_data().begin();
auto end = tensor_proto.int32_data().end();
copy(start, end, std::ostream_iterator<int>(line, ","));
} else {
CAFFE_THROW("Unimplemented Blob type.");
}
// remove the last ,
string str = line.str();
if(str.length() != 0) {
str.pop_back();
}
lines.push_back(str);
// static casts are workaround for MSVC build
auto flags = static_cast<std::ios_base::openmode>(std::ios::out);
if (index != 0) {
flags |= static_cast<std::ios_base::openmode>(std::ios::app);
} else {
flags |= static_cast<std::ios_base::openmode>(std::ios::trunc);
}
std::ofstream output_file(output_name, flags);
std::ostream_iterator<std::string> output_iterator(output_file, "\n");
std::copy(lines.begin(), lines.end(), output_iterator);
}
void observerConfig();
bool backendCudaSet(const string&);
void setDeviceType(caffe2::NetDef*, caffe2::DeviceType&);
void setOperatorEngine(caffe2::NetDef*, const string&);
int loadInput(
shared_ptr<caffe2::Workspace> workspace,
const bool run_on_gpu,
map<string, caffe2::TensorProtos>& tensor_protos_map,
const string& input,
const string& input_file,
const string& input_dims,
const string& input_type);
void fillInputBlob(
shared_ptr<caffe2::Workspace> workspace,
map<string, caffe2::TensorProtos>& tensor_protos_map,
int iteration);
void writeOutput(
shared_ptr<caffe2::Workspace> workspace,
const bool run_on_gpu,
const string& output,
const string& output_folder,
const bool text_output,
const int index,
const int num_blobs);
void logBenchmarkResult(
const std::string& type,
const std::string& metric,
const std::string& unit,
const int value);
long getVirtualMemoryIfOptionEnabled(bool FLAGS_measure_memory);
void runNetwork(
shared_ptr<caffe2::Workspace> workspace,
caffe2::NetBase* net,
map<string, caffe2::TensorProtos>& tensor_protos_map,
const bool wipe_cache,
const bool run_individual,
const bool run_on_gpu,
const bool text_output,
const int warmup,
const int iter,
const int num_blobs,
const int sleep_before_run,
const int sleep_between_iteration,
const int sleep_between_net_and_operator,
const std::string& output,
const std::string& output_folder);
int benchmark(
int argc,
char* argv[],
const string& FLAGS_backend,
const string& FLAGS_init_net,
const string& FLAGS_input,
const string& FLAGS_input_dims,
const string& FLAGS_input_file,
const string& FLAGS_input_type,
int FLAGS_iter,
bool FLAGS_measure_memory,
const string& FLAGS_net,
const string& FLAGS_output,
const string& FLAGS_output_folder,
bool FLAGS_run_individual,
int FLAGS_sleep_before_run,
int FLAGS_sleep_between_iteration,
int FLAGS_sleep_between_net_and_operator,
bool FLAGS_text_output,
int FLAGS_warmup,
bool FLAGS_wipe_cache);
|