1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <opencv2/opencv.hpp>
#include <cmath>
#include <fstream>
#include "caffe2/core/common.h"
#include "caffe2/core/db.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/timer.h"
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
#include "caffe2/utils/bench_utils.h"
#include "binaries/benchmark_args.h"
#include "binaries/benchmark_helper.h"
#include <observers/net_observer_reporter_print.h>
#include <observers/observer_config.h>
#include <observers/perf_observer.h>
C10_DEFINE_int(
batch_size,
-1,
"Specify the batch size of the input. The number of items in the "
"input needs to be multiples of the batch size. If the batch size "
"is less than 0, all inputs are in one batch.")
C10_DEFINE_bool(color, true, "If set, load images in color.");
C10_DEFINE_string(
crop,
"-1,-1",
"The center cropped hight and width. If the value is less than zero, "
"it is not cropped.");
C10_DEFINE_string(input_image_files, "", "Files containing imput images");
C10_DEFINE_string(input_text_files, "", "Text files to be written to blobs");
C10_DEFINE_string(
preprocess,
"",
"Options to specify the preprocess routines. The available options are "
"subtract128, normalize, mean, std, bgrtorgb. If multiple steps are provided, they "
"are separated by comma (,) in sequence.");
C10_DEFINE_string(
report_time,
"",
"Report the conversion stage time to screen. "
"The format of the string is <type>|<identifier>. "
"The valid type is 'json'. "
"The valid identifier is nothing or an identifier that prefix every line");
C10_DEFINE_string(
scale,
"-1,-1",
"Scale the images to be within the min,max box. The shorter edge is "
"min pixels. But if the other edge is more than the max pixels, the "
"other edge and scaled to max pixels (and the shorter edge can be less "
"than the min pixels");
C10_DEFINE_bool(warp, false, "If warp is set, warp the images to square.");
namespace caffe2 {
void reportTime(
std::string type,
double ts,
std::string metric,
std::string unit) {
if (FLAGS_report_time == "") {
return;
}
vector<string> s = caffe2::split('|', FLAGS_report_time);
assert(s[0] == "json");
std::string identifier = "";
if (s.size() > 1) {
identifier = s[1];
}
std::cout << identifier << "{\"type\": \"" << type << "\", \"value\": " << ts
<< ", \"metric\": \"" << metric << "\", \"unit\": \"" << unit
<< "\"}" << std::endl;
}
void splitSizes(const std::string& arg, int* ptr0, int* ptr1) {
vector<string> sizes = caffe2::split(',', arg);
if (sizes.size() == 2) {
*ptr0 = std::stoi(sizes[0]);
*ptr1 = std::stoi(sizes[1]);
} else if (sizes.size() == 1) {
*ptr0 = std::stoi(sizes[0]);
*ptr1 = std::stoi(sizes[0]);
} else {
assert(false);
}
}
cv::Mat resizeImage(cv::Mat& img) {
int min_size, max_size;
splitSizes(FLAGS_scale, &min_size, &max_size);
if ((min_size <= 0) && (max_size <= 0)) {
return img;
}
if (max_size < 0) {
max_size = INT_MAX;
}
assert(min_size <= max_size);
int im_min_size = img.rows > img.cols ? img.cols : img.rows;
int im_max_size = img.rows > img.cols ? img.rows : img.cols;
double im_scale = 1.0 * min_size / im_min_size;
if (im_scale * im_max_size > max_size) {
im_scale = 1.0 * max_size / im_max_size;
}
int scaled_width = int(round(img.cols * im_scale));
int scaled_height = int(round(img.rows * im_scale));
assert((scaled_width <= max_size) && (scaled_height <= max_size));
if ((scaled_width < min_size) || (scaled_height < min_size)) {
assert((scaled_width == max_size) || (scaled_height == max_size));
} else {
assert((scaled_width == min_size) || (scaled_height == min_size));
}
cv::Mat resized_img;
cv::resize(
img,
resized_img,
cv::Size(),
im_scale,
im_scale,
cv::INTER_LINEAR);
return resized_img;
}
cv::Mat cropToRec(cv::Mat& img, int* height_ptr, int* width_ptr) {
int height = *height_ptr;
int width = *width_ptr;
if ((height > 0) && (width > 0) &&
((img.rows != height) || (img.cols != width))) {
cv::Mat cropped_img, cimg;
cv::Rect roi;
roi.x = int((img.cols - width) / 2);
roi.y = int((img.rows - height) / 2);
roi.x = roi.x < 0 ? 0 : roi.x;
roi.y = roi.y < 0 ? 0 : roi.y;
width = width > img.cols ? img.cols : width;
height = height > img.rows ? img.rows : height;
roi.width = width;
roi.height = height;
assert(
0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= img.cols &&
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= img.rows);
cropped_img = img(roi);
// Make the image in continuous space in memory
cimg = cropped_img.clone();
*height_ptr = height;
*width_ptr = width;
return cimg;
} else {
return img;
}
}
std::vector<float> convertToVector(cv::Mat& img) {
std::vector<float> normalize(3, 1);
std::vector<float> mean(3, 0);
std::vector<float> std(3, 1);
bool bgrtorgb = false;
int size = img.cols * img.rows;
vector<string> steps = caffe2::split(',', FLAGS_preprocess);
for (int i = 0; i < steps.size(); i++) {
auto step = steps[i];
if (step == "subtract128") {
mean = {128, 128, 128};
std = {1, 1, 1};
normalize = {1, 1, 1};
} else if (step == "normalize") {
normalize = {255, 255, 255};
} else if (step == "mean") {
mean = {0.406f, 0.456f, 0.485f};
} else if (step == "std") {
std = {0.225f, 0.224f, 0.229f};
} else if (step == "bgrtorgb") {
bgrtorgb = true;
} else {
CAFFE_ENFORCE(
false,
"Unsupported preprocess step. The supported steps are: subtract128, "
"normalize,mean, std, swaprb.");
}
}
int C = FLAGS_color ? 3 : 1;
int total_size = C * size;
std::vector<float> values(total_size);
if (C == 1) {
cv::MatIterator_<float> it, end;
int idx = 0;
for (it = img.begin<float>(), end = img.end<float>(); it != end; ++it) {
values[idx++] = (*it / normalize[0] - mean[0]) / std[0];
}
} else {
int i = 0;
cv::MatIterator_<cv::Vec3f> it, end;
int b = bgrtorgb ? 2 : 0;
int g = 1;
int r = bgrtorgb ? 0 : 2;
for (it = img.begin<cv::Vec3f>(), end = img.end<cv::Vec3f>(); it != end;
++it, i++) {
values[i] = (((*it)[b] / normalize[0] - mean[0]) / std[0]);
int offset = size + i;
values[offset] = (((*it)[g] / normalize[1] - mean[1]) / std[1]);
offset = size + offset;
values[offset] = (((*it)[r] / normalize[2] - mean[2]) / std[2]);
}
}
return values;
}
std::vector<float> convertOneImage(
std::string& filename,
int* height_ptr,
int* width_ptr) {
assert(filename[0] != '~');
std::cout << "Converting " << filename << std::endl;
// Load image
cv::Mat img_uint8 = cv::imread(
#if CV_MAJOR_VERSION <= 3
filename, FLAGS_color ? CV_LOAD_IMAGE_COLOR : CV_LOAD_IMAGE_GRAYSCALE);
#else
filename, FLAGS_color ? cv::IMREAD_COLOR : cv::IMREAD_GRAYSCALE);
#endif
caffe2::Timer timer;
timer.Start();
cv::Mat img;
// Convert image to floating point values
img_uint8.convertTo(img, CV_32F);
// Resize image
cv::Mat resized_img = resizeImage(img);
int height, width;
splitSizes(FLAGS_crop, &height, &width);
if ((height <= 0) || (width <= 0)) {
height = resized_img.rows;
width = resized_img.cols;
}
cv::Mat crop = cropToRec(resized_img, &height, &width);
// Assert we don't have to deal with alignment
DCHECK(crop.isContinuous());
assert(crop.rows == height);
assert(crop.cols == width);
std::vector<float> one_image_values = convertToVector(crop);
*height_ptr = height;
*width_ptr = width;
double ts = timer.MicroSeconds();
reportTime("image_preprocess", ts, "convert", "us");
return one_image_values;
}
int getBatchSize(int num_items) {
int batch_size = FLAGS_batch_size;
if (batch_size < 0) {
batch_size = num_items;
} else {
assert(num_items % batch_size == 0);
}
return batch_size;
}
TensorProtos writeValues(
std::vector<std::vector<std::vector<float>>>& values,
std::vector<std::vector<int>>& dims) {
caffe2::Timer timer;
timer.Start();
assert(dims.size() == values.size());
int num_batches = dims.size();
TensorProtos protos;
for (int k = 0; k < num_batches; k++) {
TensorProto* data;
data = protos.add_protos();
data->set_data_type(TensorProto::FLOAT);
auto one_dim = dims[k];
for (int dim : one_dim) {
data->add_dims(dim);
}
int batch_size = one_dim[0];
long long int entry_size = 1;
for (int i = 1; i < one_dim.size(); i++) {
entry_size *= one_dim[i];
}
// Not optimized
for (int i = 0; i < batch_size; i++) {
assert(values[k][i].size() == entry_size);
for (int j = 0; j < values[k][i].size(); j++) {
data->add_float_data(values[k][i][j]);
}
}
}
double ts = timer.MicroSeconds();
reportTime("preprocess", ts, "data_pack", "us");
return protos;
}
TensorProtos convertImages(std::string& image_file) {
vector<string> file_names;
if (image_file != "") {
std::ifstream infile(image_file);
std::string line;
while (std::getline(infile, line)) {
vector<string> file_name = caffe2::split(',', line);
string name;
if (file_name.size() == 3) {
name = file_name[2];
} else {
name = line;
}
file_names.push_back(name);
}
} else {
TensorProtos proto;
return proto;
}
int batch_size = getBatchSize(file_names.size());
int num_batches = file_names.size() / batch_size;
assert(file_names.size() == batch_size * num_batches);
std::vector<std::vector<std::vector<float>>> values;
std::vector<std::vector<int>> dims;
int C = FLAGS_color ? 3 : 1;
for (int k = 0; k < num_batches; k++) {
std::vector<std::vector<float>> one_value;
int height = -1;
int width = -1;
for (int i = 0; i < batch_size; i++) {
int idx = k * batch_size + i;
int one_height, one_width;
std::vector<float> one_image_values =
convertOneImage(file_names[idx], &one_height, &one_width);
if (height < 0 && width < 0) {
height = one_height;
width = one_width;
} else {
assert(height == one_height);
assert(width == one_width);
}
one_value.push_back(one_image_values);
}
vector<int> one_dim = {batch_size, C, height, width};
dims.push_back(one_dim);
values.push_back(one_value);
}
return writeValues(values, dims);
}
template <class TYPE>
vector<TYPE> splitString(std::string& line) {
vector<string> vector_str = caffe2::split(',', line);
vector<TYPE> vector_int;
for (string str : vector_str) {
vector_int.push_back((TYPE)std::stod(str));
}
return vector_int;
}
/* Convert the values in a json file to blobs
The format of the json file should be:
<number of items>, <dim2>.... (dimensions of items)
<entry>, <entry>, <entry>... (all entries in one item)
<entry>, <entry>, <entry>...
....
*/
TensorProtos convertValues(std::string& file_name) {
if (file_name == "") {
TensorProtos proto;
return proto;
}
std::ifstream infile(file_name);
std::string line;
std::getline(infile, line);
vector<int> file_dims = splitString <int>(line);
assert(file_dims.size() >= 2);
int num_items = file_dims[0];
int batch_size = getBatchSize(num_items);
int num_batches = num_items / batch_size;
assert(num_items == batch_size * num_batches);
vector<string> lines;
while (std::getline(infile, line)) {
lines.push_back(line);
}
assert(lines.size() == num_items);
std::vector<std::vector<std::vector<float>>> values;
std::vector<std::vector<int>> dims;
for (int i = 0; i < num_batches; i++) {
std::vector<std::vector<float>> one_value;
int num = -1;
for (int j = 0; j < batch_size; j++) {
int idx = i * batch_size + j;
std::string line = lines[idx];
vector<float> item = splitString<float>(line);
if (num < 0) {
num = item.size();
} else {
assert(num == item.size());
}
one_value.push_back(item);
}
vector<int> batch_dims = file_dims;
batch_dims[0] = batch_size;
dims.push_back(batch_dims);
values.push_back(one_value);
}
return writeValues(values, dims);
}
} // namespace caffe2
void observerConfig() {
caffe2::ClearGlobalNetObservers();
caffe2::AddGlobalNetObserverCreator([](caffe2::NetBase* subject) {
return std::make_unique<caffe2::PerfNetObserver>(subject);
});
caffe2::ObserverConfig::setReporter(
std::make_unique<caffe2::NetObserverReporterPrint>());
}
bool backendCudaSet(const string& backend) {
bool run_on_gpu = false;
if (backend == "cuda") {
#ifdef __CUDA_ARCH__
if (caffe2::HasCudaGPU()) {
run_on_gpu = true;
} else {
CAFFE_THROW("NO GPU support on this host machine");
}
#else
CAFFE_THROW("NO GPU support");
#endif
}
return run_on_gpu;
}
void setOperatorEngine(caffe2::NetDef* net_def, const string& backend) {
if (backend != "builtin") {
string engine;
if( backend == "nnpack" ) {
engine = "NNPACK";
} else if ( backend == "eigen" ) {
engine = "EIGEN";
} else if ( backend == "mkl" ) {
engine = "MKLDNN";
} else if ( backend == "cuda" ) {
engine = "CUDA";
} else if ( backend == "dnnlowp" ) {
engine = "DNNLOWP";
} else if ( backend == "dnnlowp_acc16" ) {
engine = "DNNLOWP_ACC16";
} else if ( backend == "default" ) {
engine = "";
} else {
engine = "NONE";
}
CAFFE_ENFORCE(engine != "NONE", "Backend is not supported");
for (int i = 0; i < net_def->op_size(); i++) {
caffe2::OperatorDef* op_def = net_def->mutable_op(i);
op_def->set_engine(engine);
}
}
}
void fillInputBlob(
shared_ptr<caffe2::Workspace> workspace,
map<string, caffe2::TensorProtos>& tensor_protos_map,
int iteration) {
if (tensor_protos_map.empty()) {
return;
}
static caffe2::TensorDeserializer deserializer;
for (auto& tensor_kv : tensor_protos_map) {
caffe2::Blob* blob = workspace->GetBlob(tensor_kv.first);
if (blob == nullptr) {
blob = workspace->CreateBlob(tensor_kv.first);
}
// todo: support gpu and make this function a template
int protos_size = tensor_kv.second.protos_size();
if (protos_size == 1 && iteration > 0) {
// Do not override the input data if there is only one input data,
// since it will clear all caches. Rely on wipe_cache to
// clear caches
continue;
}
caffe2::TensorProto* tensor_proto =
tensor_kv.second.mutable_protos(iteration % protos_size);
BlobSetTensor(blob, deserializer.Deserialize(*tensor_proto));
// todo: for other types
}
}
void writeOutput(
shared_ptr<caffe2::Workspace> workspace,
const bool run_on_gpu,
const string& output,
const string& output_folder,
const bool text_output,
const int index,
const int num_blobs) {
if (output.size() == 0) {
return;
}
string output_prefix = output_folder.size() ? output_folder + "/" : "";
vector<string> output_names = caffe2::split(',', output);
if (output == "*") {
output_names = workspace->Blobs();
}
for (const string& name : output_names) {
CAFFE_ENFORCE(
workspace->HasBlob(name),
"You requested a non-existing blob: ",
name);
if (text_output) {
if (run_on_gpu) {
#ifdef __CUDA_ARCH__
writeTextOutput<caffe2::CUDAContext, caffe2::TensorCUDA>(
workspace->GetBlob(name)->GetMutable<caffe2::TensorCUDA>(),
output_prefix,
name,
index,
num_blobs);
#else
CAFFE_THROW("Not support GPU.");
#endif
} else {
writeTextOutput<caffe2::CPUContext, caffe2::TensorCPU>(
BlobGetMutableTensor(workspace->GetBlob(name), caffe2::CPU),
output_prefix,
name,
index,
num_blobs);
}
} else {
// Do not support multiple entries per blob.
CAFFE_ENFORCE(
index == 0,
"Binary file only support one output.");
string serialized = SerializeBlob(*workspace->GetBlob(name), name);
string output_filename = output_prefix + name;
caffe2::WriteStringToFile(serialized, output_filename.c_str());
}
}
}
void runNetwork(
shared_ptr<caffe2::Workspace> workspace,
caffe2::NetDef& net_def,
map<string, caffe2::TensorProtos>& tensor_protos_map,
const bool wipe_cache,
const bool run_individual,
const bool run_on_gpu,
const bool text_output,
const int warmup,
const int iter,
const int num_blobs,
const int sleep_before_run,
const int sleep_between_iteration,
const int sleep_between_net_and_operator,
const std::string& output,
const std::string& output_folder) {
if (!net_def.has_name()) {
net_def.set_name("benchmark");
}
caffe2::NetBase* net = workspace->CreateNet(net_def);
TORCH_CHECK_NOTNULL(net);
LOG(INFO) << "Starting benchmark.";
caffe2::ObserverConfig::initSampleRate(1, 1, 1, run_individual, warmup);
LOG(INFO) << "Running warmup runs.";
for (int i = 0; i < warmup; ++i) {
fillInputBlob(workspace, tensor_protos_map, i);
CAFFE_ENFORCE(net->Run(), "Warmup run ", i, " has failed.");
}
if (wipe_cache) {
caffe2::wipe_cache();
}
if (sleep_before_run > 0) {
std::this_thread::sleep_for(std::chrono::seconds(sleep_before_run));
}
LOG(INFO) << "Main runs.";
CAFFE_ENFORCE(
iter >= 0,
"Number of main runs should be non negative, provided ",
iter,
".");
LOG(INFO) << "net runs.";
for (int i = 0; i < iter; ++i) {
caffe2::ObserverConfig::initSampleRate(1, 1, 1, 0, warmup);
fillInputBlob(workspace, tensor_protos_map, i);
if (wipe_cache) {
caffe2::wipe_cache();
}
CAFFE_ENFORCE(net->Run(), "Main run ", i, " has failed.");
// Write the output for the first num_blobs times
writeOutput(
workspace,
run_on_gpu,
output,
output_folder,
text_output,
i,
num_blobs);
if (wipe_cache) {
caffe2::wipe_cache();
}
if (sleep_between_iteration > 0) {
std::this_thread::sleep_for(
std::chrono::seconds(sleep_between_iteration));
}
}
if (run_individual) {
LOG(INFO) << "operator runs.";
if (sleep_between_net_and_operator > 0) {
std::this_thread::sleep_for(
std::chrono::seconds(sleep_between_net_and_operator));
}
for (int i = 0; i < iter; ++i) {
caffe2::ObserverConfig::initSampleRate(1, 1, 1, 1, warmup);
fillInputBlob(workspace, tensor_protos_map, i);
CAFFE_ENFORCE(net->Run(), "Main run ", i, " with operator has failed.");
if (wipe_cache) {
caffe2::wipe_cache();
}
if (sleep_between_iteration > 0) {
std::this_thread::sleep_for(
std::chrono::seconds(sleep_between_iteration));
}
}
}
}
int benchmark(
int argc,
char* argv[],
const string& FLAGS_backend,
const string& FLAGS_init_net,
const string& FLAGS_input_dims,
int FLAGS_iter,
const string& FLAGS_net,
const string& FLAGS_output,
const string& FLAGS_output_folder,
bool FLAGS_run_individual,
int FLAGS_sleep_before_run,
int FLAGS_sleep_between_iteration,
int FLAGS_sleep_between_net_and_operator,
bool FLAGS_text_output,
int FLAGS_warmup,
bool FLAGS_wipe_cache) {
// Check arguments to be correct
{
// Need to check whether file exists, as the file reader does not assert if
// file does not exist
std::ifstream net_file(FLAGS_net);
CAFFE_ENFORCE(net_file.good());
net_file.close();
std::ifstream init_net_file(FLAGS_init_net);
CAFFE_ENFORCE(init_net_file.good());
init_net_file.close();
}
observerConfig();
caffe2::ShowLogInfoToStderr();
auto workspace = std::make_shared<caffe2::Workspace>(new caffe2::Workspace());
bool run_on_gpu = backendCudaSet(FLAGS_backend);
// Run initialization network.
caffe2::NetDef init_net_def;
CAFFE_ENFORCE(ReadProtoFromFile(FLAGS_init_net, &init_net_def));
setOperatorEngine(&init_net_def, FLAGS_backend);
CAFFE_ENFORCE(workspace->RunNetOnce(init_net_def));
// Run main network.
caffe2::NetDef net_def;
CAFFE_ENFORCE(ReadProtoFromFile(FLAGS_net, &net_def));
setOperatorEngine(&net_def, FLAGS_backend);
map<string, caffe2::TensorProtos> tensor_protos_map;
int num_blobs;
vector<string> images = caffe2::split(';', FLAGS_input_image_files);
for (int i = 0; i < images.size(); ++i) {
vector<string> mapping = caffe2::split(',', images[i]);
caffe2::TensorProtos proto_images = caffe2::convertImages(mapping[1]);
workspace->CreateBlob(mapping[0]);
tensor_protos_map.insert(std::make_pair(mapping[0], proto_images));
num_blobs = proto_images.protos_size();
}
vector<string> values = caffe2::split(';', FLAGS_input_text_files);
for (int i = 0; i < values.size(); ++i) {
vector<string> mapping = caffe2::split(',', values[i]);
caffe2::TensorProtos proto_values = caffe2::convertValues(mapping[1]);
workspace->CreateBlob(mapping[0]);
tensor_protos_map.insert(std::make_pair(mapping[0], proto_values));
num_blobs = proto_values.protos_size();
}
runNetwork(
workspace,
net_def,
tensor_protos_map,
FLAGS_wipe_cache,
FLAGS_run_individual,
run_on_gpu,
FLAGS_text_output,
FLAGS_warmup,
FLAGS_iter,
num_blobs,
FLAGS_sleep_before_run,
FLAGS_sleep_between_iteration,
FLAGS_sleep_between_net_and_operator,
FLAGS_output,
FLAGS_output_folder);
return 0;
}
int main(int argc, char** argv) {
caffe2::GlobalInit(&argc, &argv);
benchmark(
argc,
argv,
FLAGS_backend,
FLAGS_init_net,
FLAGS_input_dims,
FLAGS_iter,
FLAGS_net,
FLAGS_output,
FLAGS_output_folder,
FLAGS_run_individual,
FLAGS_sleep_before_run,
FLAGS_sleep_between_iteration,
FLAGS_sleep_between_net_and_operator,
FLAGS_text_output,
FLAGS_warmup,
FLAGS_wipe_cache);
return 0;
}
|