1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include "caffe2/core/blob_serialization.h"
#include "caffe2/core/init.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#ifdef CAFFE2_OPTIMIZER
#include "caffe2/opt/optimizer.h"
#endif
#include "caffe2/proto/caffe2_pb.h"
#include "caffe2/utils/proto_utils.h"
#include "caffe2/utils/string_utils.h"
C10_DEFINE_string(net, "", "The given net to benchmark.");
C10_DEFINE_string(init_net, "", "The given net to initialize any parameters.");
C10_DEFINE_string(
input,
"",
"Input that is needed for running the network. If "
"multiple input needed, use comma separated string.");
C10_DEFINE_string(
input_file,
"",
"Input file that contain the serialized protobuf for "
"the input blobs. If multiple input needed, use comma "
"separated string. Must have the same number of items "
"as input does.");
C10_DEFINE_string(
input_dims,
"",
"Alternate to input_files, if all inputs are simple "
"float TensorCPUs, specify the dimension using comma "
"separated numbers. If multiple input needed, use "
"semicolon to separate the dimension of different "
"tensors.");
C10_DEFINE_string(input_type, "", "Input type (uint8_t/float)");
C10_DEFINE_string(
output,
"",
"Output that should be dumped after the execution "
"finishes. If multiple outputs are needed, use comma "
"separated string. If you want to dump everything, pass "
"'*' as the output value.");
C10_DEFINE_string(
output_folder,
"",
"The folder that the output should be written to. This "
"folder must already exist in the file system.");
C10_DEFINE_int(warmup, 0, "The number of iterations to warm up.");
C10_DEFINE_int(iter, 10, "The number of iterations to run.");
C10_DEFINE_int(opt, 0, "The level of optimization to run automatically.");
C10_DEFINE_bool(
run_individual,
false,
"Whether to benchmark individual operators.");
C10_DEFINE_bool(force_engine, false, "Force engine field for all operators");
C10_DEFINE_string(engine, "", "Forced engine field value");
C10_DEFINE_bool(force_algo, false, "Force algo arg for all operators");
C10_DEFINE_string(algo, "", "Forced algo arg value");
using std::string;
using std::unique_ptr;
using std::vector;
int main(int argc, char** argv) {
caffe2::GlobalInit(&argc, &argv);
unique_ptr<caffe2::Workspace> workspace(new caffe2::Workspace());
// Run initialization network.
caffe2::NetDef net_def;
CAFFE_ENFORCE(ReadProtoFromFile(FLAGS_init_net, &net_def));
CAFFE_ENFORCE(workspace->RunNetOnce(net_def));
// Load input.
if (FLAGS_input.size()) {
vector<string> input_names = caffe2::split(',', FLAGS_input);
if (FLAGS_input_file.size()) {
vector<string> input_files = caffe2::split(',', FLAGS_input_file);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_files.size(),
"Input name and file should have the same number.");
for (int i = 0; i < input_names.size(); ++i) {
caffe2::BlobProto blob_proto;
CAFFE_ENFORCE(caffe2::ReadProtoFromFile(input_files[i], &blob_proto));
DeserializeBlob(blob_proto, workspace->CreateBlob(input_names[i]));
}
} else if (FLAGS_input_dims.size() || FLAGS_input_type.size()) {
CAFFE_ENFORCE_GE(
FLAGS_input_dims.size(),
0,
"Input dims must be specified when input tensors are used.");
CAFFE_ENFORCE_GE(
FLAGS_input_type.size(),
0,
"Input type must be specified when input tensors are used.");
vector<string> input_dims_list = caffe2::split(';', FLAGS_input_dims);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_dims_list.size(),
"Input name and dims should have the same number of items.");
vector<string> input_type_list = caffe2::split(';', FLAGS_input_type);
CAFFE_ENFORCE_EQ(
input_names.size(),
input_type_list.size(),
"Input name and type should have the same number of items.");
for (size_t i = 0; i < input_names.size(); ++i) {
vector<string> input_dims_str = caffe2::split(',', input_dims_list[i]);
vector<int> input_dims;
for (const string& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
caffe2::Blob* blob = workspace->GetBlob(input_names[i]);
if (blob == nullptr) {
blob = workspace->CreateBlob(input_names[i]);
}
if (input_type_list[i] == "uint8_t") {
caffe2::int8::Int8TensorCPU* tensor =
blob->GetMutable<caffe2::int8::Int8TensorCPU>();
TORCH_CHECK_NOTNULL(tensor);
tensor->t.Resize(input_dims);
tensor->t.mutable_data<uint8_t>();
} else if (input_type_list[i] == "float") {
caffe2::TensorCPU* tensor = BlobGetMutableTensor(blob, caffe2::CPU);
TORCH_CHECK_NOTNULL(tensor);
tensor->Resize(input_dims);
tensor->mutable_data<float>();
} else {
CAFFE_THROW("Unsupported input type: ", input_type_list[i]);
}
}
} else {
CAFFE_THROW(
"You requested input tensors, but neither input_file nor "
"input_dims is set.");
}
}
// Run main network.
CAFFE_ENFORCE(ReadProtoFromFile(FLAGS_net, &net_def));
if (!net_def.has_name()) {
net_def.set_name("benchmark");
}
// force changing engine and algo
if (FLAGS_force_engine) {
LOG(INFO) << "force engine be: " << FLAGS_engine;
for (const auto& op : net_def.op()) {
const_cast<caffe2::OperatorDef*>(&op)->set_engine(FLAGS_engine);
}
}
if (FLAGS_force_algo) {
LOG(INFO) << "force algo be: " << FLAGS_algo;
for (const auto& op : net_def.op()) {
caffe2::GetMutableArgument(
"algo", true, const_cast<caffe2::OperatorDef*>(&op))
->set_s(FLAGS_algo);
}
}
if (FLAGS_opt) {
#ifdef CAFFE2_OPTIMIZER
net_def = caffe2::opt::optimize(net_def, workspace.get(), FLAGS_opt);
#else
LOG(WARNING) << "Caffe2 not compiled with optimization passes.";
#endif
}
caffe2::NetBase* net = workspace->CreateNet(net_def);
TORCH_CHECK_NOTNULL(net);
CAFFE_ENFORCE(net->Run());
net->TEST_Benchmark(FLAGS_warmup, FLAGS_iter, FLAGS_run_individual);
string output_prefix =
FLAGS_output_folder.size() ? FLAGS_output_folder + "/" : "";
if (FLAGS_output.size()) {
vector<string> output_names = caffe2::split(',', FLAGS_output);
if (FLAGS_output == "*") {
output_names = workspace->Blobs();
}
for (const string& name : output_names) {
CAFFE_ENFORCE(
workspace->HasBlob(name),
"You requested a non-existing blob: ",
name);
string serialized = SerializeBlob(*workspace->GetBlob(name), name);
string output_filename = output_prefix + name;
caffe2::WriteStringToFile(serialized, output_filename.c_str());
}
}
return 0;
}
|