1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/**
* Copyright (c) 2016-present, Facebook, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <string>
#include <vector>
#include <ATen/ATen.h>
#include "caffe2/core/timer.h"
#include "caffe2/utils/string_utils.h"
#include <torch/csrc/autograd/grad_mode.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/mobile/import.h>
#include <torch/csrc/jit/serialization/import.h>
#include <torch/script.h>
#include <c10/mobile/CPUCachingAllocator.h>
#include <chrono>
using namespace std::chrono;
C10_DEFINE_string(model, "", "The given torch script model to benchmark.");
C10_DEFINE_string(
input_dims,
"",
"Alternate to input_files, if all inputs are simple "
"float TensorCPUs, specify the dimension using comma "
"separated numbers. If multiple input needed, use "
"semicolon to separate the dimension of different "
"tensors.");
C10_DEFINE_string(input_type, "", "Input type (uint8_t/float)");
C10_DEFINE_string(
input_memory_format,
"contiguous_format",
"Input memory format (contiguous_format/channels_last)");
C10_DEFINE_bool(
no_inputs,
false,
"Whether the model has any input. Will ignore other input arguments if true");
C10_DEFINE_bool(
use_caching_allocator,
false,
"Whether to cache allocations between inference iterations");
C10_DEFINE_int(
use_bundled_input,
-1,
"If set, benchmark will expect the model to have bundled inputs "
"and will run on the input with this index. ");
C10_DEFINE_bool(
print_output,
false,
"Whether to print output with all one input tensor.");
C10_DEFINE_int(warmup, 0, "The number of iterations to warm up.");
C10_DEFINE_int(iter, 10, "The number of iterations to run.");
C10_DEFINE_bool(
report_pep,
false,
"Whether to print performance stats for AI-PEP.");
C10_DEFINE_int(pytext_len, 0, "Length of input sequence.");
C10_DEFINE_bool(vulkan, false, "Whether to use Vulkan backend (GPU).");
namespace {
std::vector<std::string>
split(char separator, const std::string& string, bool ignore_empty = true) {
std::vector<std::string> pieces;
std::stringstream ss(string);
std::string item;
while (getline(ss, item, separator)) {
if (!ignore_empty || !item.empty()) {
pieces.push_back(std::move(item));
}
}
return pieces;
}
std::vector<c10::IValue> create_inputs() {
if (FLAGS_no_inputs) {
return {};
}
if (FLAGS_use_bundled_input >= 0) {
// Need to get these after the model is loaded.
return {};
}
CAFFE_ENFORCE_GE(FLAGS_input_dims.size(), 0, "Input dims must be specified.");
CAFFE_ENFORCE_GE(FLAGS_input_type.size(), 0, "Input type must be specified.");
std::vector<std::string> input_dims_list = split(';', FLAGS_input_dims);
std::vector<std::string> input_type_list = split(';', FLAGS_input_type);
std::vector<std::string> input_memory_format_list =
split(';', FLAGS_input_memory_format);
CAFFE_ENFORCE_EQ(
input_dims_list.size(),
input_type_list.size(),
"Input dims and type should have the same number of items.");
CAFFE_ENFORCE_EQ(
input_dims_list.size(),
input_memory_format_list.size(),
"Input dims and format should have the same number of items.");
std::vector<c10::IValue> inputs;
for (size_t i = 0; i < input_dims_list.size(); ++i) {
auto input_dims_str = split(',', input_dims_list[i]);
std::vector<int64_t> input_dims;
for (const auto& s : input_dims_str) {
input_dims.push_back(c10::stoi(s));
}
at::ScalarType input_type;
if (input_type_list[i] == "float") {
input_type = at::ScalarType::Float;
} else if (input_type_list[i] == "uint8_t") {
input_type = at::ScalarType::Byte;
} else if (input_type_list[i] == "int64") {
input_type = at::ScalarType::Long;
} else {
CAFFE_THROW("Unsupported input type: ", input_type_list[i]);
}
at::MemoryFormat input_memory_format;
if (input_memory_format_list[i] == "channels_last") {
if (input_dims.size() != 4u) {
CAFFE_THROW(
"channels_last memory format only available on 4D tensors!");
}
input_memory_format = at::MemoryFormat::ChannelsLast;
} else if (input_memory_format_list[i] == "contiguous_format") {
input_memory_format = at::MemoryFormat::Contiguous;
} else {
CAFFE_THROW(
"Unsupported input memory format: ", input_memory_format_list[i]);
}
inputs.push_back(
torch::ones(
input_dims,
at::TensorOptions(input_type).
memory_format(input_memory_format)));
}
if (FLAGS_pytext_len > 0) {
auto stensor = FLAGS_pytext_len * at::ones({1}, torch::kI64);
inputs.push_back(stensor);
}
return inputs;
}
template<class T>
class Runner {
public:
virtual ~Runner() = default;
virtual c10::IValue run(
T& module,
const std::vector<c10::IValue>& inputs) {
return module.forward(inputs);
}
};
template<class T>
class vkRunner final : public Runner<T> {
public:
virtual ~vkRunner() = default;
virtual c10::IValue run(
T& module,
const std::vector<c10::IValue>& inputs) override {
if (inputs_.size() == 0) {
// Upload the input tensor(s) to GPU memory.
inputs_.clear();
inputs_.reserve(inputs.size());
for (const auto& input : inputs) {
if (input.isTensor()) {
inputs_.emplace_back(at::rand(input.toTensor().sizes()).vulkan());
}
else if (input.isTensorList()) {
const c10::List<at::Tensor> input_as_list = input.toTensorList();
c10::List<at::Tensor> input_vk_list;
input_vk_list.reserve(input_as_list.size());
for (int i=0; i < input_as_list.size(); ++i) {
const at::Tensor element = input_as_list.get(i);
input_vk_list.emplace_back(at::rand(element.sizes()).vulkan());
}
inputs_.emplace_back(c10::IValue(input_vk_list));
}
else {
CAFFE_THROW("Inputs must only contain IValues of type c10::Tensor or c10::TensorList!");
}
}
}
// Run, and download the output tensor to system memory.
c10::IValue output = module.forward(inputs_);
if (output.isTensor()) {
return output.toTensor().cpu();
}
else if (output.isTensorList()) {
return output.toTensorList().get(0).cpu();
}
else if (output.isList()) {
return output.toList().get(0).toTensor().cpu();
}
else if (output.isTuple()) {
return output.toTuple()->elements()[0].toTensor().cpu();
}
else {
CAFFE_THROW("Outputs must only be either c10::Tensor or c10::TensorList!");
};
}
private:
std::vector<c10::IValue> inputs_;
};
} // namespace
int main(int argc, char** argv) {
c10::SetUsageMessage(
"Run speed benchmark for pytorch model.\n"
"Example usage:\n"
"./speed_benchmark_torch"
" --model=<model_file>"
" --use_bundled_input=0"
" --warmup=5"
" --iter=20");
if (!c10::ParseCommandLineFlags(&argc, &argv)) {
std::cerr << "Failed to parse command line flags!" << std::endl;
return 1;
}
std::vector<c10::IValue> inputs = create_inputs();
c10::InferenceMode mode;
#if BUILD_LITE_INTERPRETER
auto module = torch::jit::_load_for_mobile(FLAGS_model);
#else
torch::jit::GraphOptimizerEnabledGuard no_optimizer_guard(false);
auto module = torch::jit::load(FLAGS_model);
#endif
if (FLAGS_use_bundled_input >= 0) {
auto get_method = module.find_method("get_all_bundled_inputs");
if (!get_method) {
std::cerr << "Model does not have bundled inputs. Before saving," << std::endl
<< "use torch.utils.bundled_inputs.augment_model_with_bundled_inputs." << std::endl;
return 1;
}
auto all_inputs = (*get_method)({}).toList();
if (FLAGS_use_bundled_input >= all_inputs.size()) {
// NOTE: This check is only to make the error message nicer.
// The get call below does internal bounds checking.
std::cerr << "Model has only " << all_inputs.size() << " bundled inputs." << std::endl;
return 1;
}
inputs = all_inputs.get(FLAGS_use_bundled_input).toTupleRef().elements();
}
#ifdef BUILD_LITE_INTERPRETER
using ModuleType = torch::jit::mobile::Module;
#else
using ModuleType = torch::jit::Module;
#endif
const auto runner = FLAGS_vulkan ? std::make_unique<vkRunner<ModuleType>>()
: std::make_unique<Runner<ModuleType>>();
#ifndef BUILD_LITE_INTERPRETER
module.eval();
#endif
if (FLAGS_print_output) {
std::cout << runner->run(module, inputs) << std::endl;
}
c10::CPUCachingAllocator caching_allocator;
c10::optional<c10::WithCPUCachingAllocatorGuard> caching_allocator_guard;
if (FLAGS_use_caching_allocator) {
caching_allocator_guard.emplace(&caching_allocator);
}
std::cout << "Starting benchmark." << std::endl;
std::cout << "Running warmup runs." << std::endl;
CAFFE_ENFORCE(
FLAGS_warmup >= 0,
"Number of warm up runs should be non negative, provided ",
FLAGS_warmup,
".");
for (int i = 0; i < FLAGS_warmup; ++i) {
runner->run(module, inputs);
}
std::cout << "Main runs." << std::endl;
CAFFE_ENFORCE(
FLAGS_iter >= 0,
"Number of main runs should be non negative, provided ",
FLAGS_iter,
".");
caffe2::Timer timer;
std::vector<float> times;
auto micros = timer.MicroSeconds();
for (int i = 0; i < FLAGS_iter; ++i) {
auto start = high_resolution_clock::now();
runner->run(module, inputs);
auto stop = high_resolution_clock::now();
auto duration = duration_cast<microseconds>(stop - start);
times.push_back(duration.count());
}
micros = timer.MicroSeconds();
if (FLAGS_report_pep) {
for (auto t : times) {
std::cout << "PyTorchObserver {\"type\": \"NET\", \"unit\": \"us\", \"metric\": \"latency\", \"value\": \"" << t << "\"}" << std::endl;
}
}
std::cout << "Main run finished. Microseconds per iter: "
<< micros / FLAGS_iter
<< ". Iters per second: " << 1000.0 * 1000 * FLAGS_iter / micros
<< std::endl;
return 0;
}
|