1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
#pragma once
#include <stddef.h>
#include <memory>
#include <c10/core/Device.h>
#include <c10/util/Exception.h>
#include <c10/util/ThreadLocalDebugInfo.h>
#include <c10/util/UniqueVoidPtr.h>
namespace c10 {
// A DataPtr is a unique pointer (with an attached deleter and some
// context for the deleter) to some memory, which also records what
// device is for its data.
//
// nullptr DataPtrs can still have a nontrivial device; this allows
// us to treat zero-size allocations uniformly with non-zero allocations.
//
class C10_API DataPtr {
private:
c10::detail::UniqueVoidPtr ptr_;
Device device_;
public:
// Choice of CPU here is arbitrary; if there's an "undefined" device
// we could use that too
DataPtr() : ptr_(), device_(DeviceType::CPU) {}
DataPtr(void* data, Device device) : ptr_(data), device_(device) {}
DataPtr(void* data, void* ctx, DeleterFnPtr ctx_deleter, Device device)
: ptr_(data, ctx, ctx_deleter), device_(device) {}
void* operator->() const {
return ptr_.get();
}
void clear() {
ptr_.clear();
}
void* get() const {
return ptr_.get();
}
void* get_context() const {
return ptr_.get_context();
}
void* release_context() {
return ptr_.release_context();
}
std::unique_ptr<void, DeleterFnPtr>&& move_context() {
return ptr_.move_context();
}
operator bool() const {
return static_cast<bool>(ptr_);
}
template <typename T>
T* cast_context(DeleterFnPtr expected_deleter) const {
return ptr_.cast_context<T>(expected_deleter);
}
DeleterFnPtr get_deleter() const {
return ptr_.get_deleter();
}
/**
* Compare the deleter in a DataPtr to expected_deleter.
* If it matches, replace the deleter with new_deleter
* and return true; otherwise, does nothing and returns
* false.
*
* In general, it is not safe to unconditionally set the
* deleter on a DataPtr, because you don't know what
* the deleter is, and thus will have a hard time properly
* disposing of the deleter without storing the original
* deleter (this is difficult to do, because DeleterFnPtr
* is not a closure, and because the context on DataPtr is
* only a single word, you generally don't have enough
* space to store both the original deleter and its context).
* However, in some cases, you know /exactly/ what the deleter
* is, and you have a new deleter that manually wraps
* the old one. In this case, you can safely swap the deleter
* after asserting that the deleters line up.
*
* What are the requirements on new_deleter? It must still
* properly dispose of the void* pointer passed in as its argument,
* where void* is whatever the context of the original deleter
* is. So in general, you expect the new deleter to look something
* like this:
*
* [](void* ptr) {
* some_new_stuff(ptr);
* get_orig_allocator()->raw_deleter(ptr);
* }
*
* Note that it won't work to close over the original
* allocator; you don't have enough space to do that! Also,
* it's unsafe to assume that the passed in pointer in
* question is the memory pointer in question; it might not
* be; be sure to read the source code of the Allocator
* in question to confirm this.
*/
C10_NODISCARD bool compare_exchange_deleter(
DeleterFnPtr expected_deleter,
DeleterFnPtr new_deleter) {
return ptr_.compare_exchange_deleter(expected_deleter, new_deleter);
}
Device device() const {
return device_;
}
// Unsafely mutates the device on a DataPtr. Under normal use,
// you should never actually need to call this function.
// We need this for the implementation of the hack detailed
// in Note [Masquerading as CUDA]
void unsafe_set_device(Device device) {
device_ = device;
}
};
// NB: Device is NOT tested for here; a CUDA nullptr is as much a nullptr as a
// CPU nullptr
inline bool operator==(const DataPtr& dp, std::nullptr_t) noexcept {
return !dp;
}
inline bool operator==(std::nullptr_t, const DataPtr& dp) noexcept {
return !dp;
}
inline bool operator!=(const DataPtr& dp, std::nullptr_t) noexcept {
return dp;
}
inline bool operator!=(std::nullptr_t, const DataPtr& dp) noexcept {
return dp;
}
// Note [raw_allocate/raw_deallocate and Thrust]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Thrust's support for custom allocators requires us to write something
// like this:
//
// class ThrustAllocator {
// char* allocate(size_t);
// void deallocate(char*, size_t);
// };
//
// This is not good for our unique_ptr based allocator interface, as
// there is no way to get to the context when we free.
//
// However, in some cases the context is exactly the same as
// the data pointer. In this case, we can support the "raw"
// allocate and deallocate interface. This is what
// raw_deleter signifies. By default, it returns a nullptr, which means that
// the raw interface is not implemented. Be sure to implement it whenever
// possible, or the raw interface will incorrectly reported as unsupported,
// when it is actually possible.
struct C10_API Allocator {
virtual ~Allocator() = default;
virtual DataPtr allocate(size_t n) const = 0;
// If this returns a non nullptr, it means that allocate()
// is guaranteed to return a unique_ptr with this deleter attached;
// it means the rawAllocate and rawDeallocate APIs are safe to use.
// This function MUST always return the same BoundDeleter.
virtual DeleterFnPtr raw_deleter() const {
return nullptr;
}
void* raw_allocate(size_t n) {
auto dptr = allocate(n);
AT_ASSERT(dptr.get() == dptr.get_context());
return dptr.release_context();
}
void raw_deallocate(void* ptr) {
auto d = raw_deleter();
AT_ASSERT(d);
d(ptr);
}
};
// This context is used to generate DataPtr which have arbitrary
// std::function deleters associated with them. In some user facing
// functions, we give a (user-friendly) interface for constructing
// tensors from external data which take an arbitrary std::function
// deleter. Grep for InefficientStdFunctionContext to find these
// occurrences.
//
// This context is inefficient because we have to do a dynamic
// allocation InefficientStdFunctionContext, on top of the dynamic
// allocation which is implied by std::function itself.
struct C10_API InefficientStdFunctionContext {
std::unique_ptr<void, std::function<void(void*)>> ptr_;
InefficientStdFunctionContext(
std::unique_ptr<void, std::function<void(void*)>>&& ptr)
: ptr_(std::move(ptr)) {}
static DataPtr makeDataPtr(
void* ptr,
const std::function<void(void*)>& deleter,
Device device);
};
/** Set the allocator for DeviceType `t`. The passed in allocator pointer is
* expected to have static lifetime; this function does NOT take ownership
* of the raw pointer. (The reason for this is to prevent existing pointers
* to an allocator of a particular device from being invalidated when
* SetAllocator is called.)
*
* Also note that this is not thread-safe, and we assume this function will
* only be called during initialization.
*
* The 'priority' flag is introduced when we want to overwrite the default
* allocator, since the allocators are set statically. The default priority
* is 0, which means the lowest. Only higher or equal priority can overwrite
* existing ones.
*/
C10_API void SetAllocator(DeviceType t, Allocator* alloc, uint8_t priority = 0);
C10_API Allocator* GetAllocator(const DeviceType& t);
template <DeviceType t>
struct AllocatorRegisterer {
explicit AllocatorRegisterer(Allocator* alloc) {
SetAllocator(t, alloc);
}
};
#define REGISTER_ALLOCATOR(t, f) \
namespace { \
static c10::AllocatorRegisterer<t> g_allocator_d(f); \
}
// An interface for reporting thread local memory usage
// per device
struct C10_API MemoryReportingInfoBase : public c10::DebugInfoBase {
MemoryReportingInfoBase();
virtual ~MemoryReportingInfoBase() {}
/**
* alloc_size corresponds to the size of the ptr.
*
* total_allocated corresponds to total allocated memory.
*
* total_reserved corresponds to total size of memory pool, both used and
* unused, if applicable.
*/
virtual void reportMemoryUsage(
void* ptr,
int64_t alloc_size,
int64_t total_allocated,
int64_t total_reserved,
Device device) = 0;
virtual void reportOutOfMemory(
int64_t alloc_size,
int64_t total_allocated,
int64_t total_reserved,
Device device);
virtual bool memoryProfilingEnabled() const = 0;
};
C10_API bool memoryProfilingEnabled();
C10_API void reportMemoryUsageToProfiler(
void* ptr,
int64_t alloc_size,
int64_t total_allocated,
int64_t total_reserved,
Device device);
C10_API void reportOutOfMemoryToProfiler(
int64_t alloc_size,
int64_t total_allocated,
int64_t total_reserved,
Device device);
} // namespace c10
|