1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
|
#include <c10/core/Allocator.h>
#include <c10/core/CPUAllocator.h>
#include <c10/core/DeviceType.h>
#include <c10/core/alignment.h>
#include <c10/core/impl/alloc_cpu.h>
#include <c10/mobile/CPUCachingAllocator.h>
#include <c10/mobile/CPUProfilingAllocator.h>
// TODO: rename flag to C10
C10_DEFINE_bool(
caffe2_report_cpu_memory_usage,
false,
"If set, print out detailed memory usage");
namespace c10 {
struct C10_API DefaultCPUAllocator final : at::Allocator {
DefaultCPUAllocator() = default;
at::DataPtr allocate(size_t nbytes) const override {
void* data = nullptr;
try {
data = c10::alloc_cpu(nbytes);
} catch (c10::Error& e) {
profiledCPUMemoryReporter().OutOfMemory(nbytes);
throw e;
}
profiledCPUMemoryReporter().New(data, nbytes);
return {data, data, &ReportAndDelete, at::Device(at::DeviceType::CPU)};
}
static void ReportAndDelete(void* ptr) {
if (!ptr) {
return;
}
profiledCPUMemoryReporter().Delete(ptr);
free_cpu(ptr);
}
at::DeleterFnPtr raw_deleter() const override {
return &ReportAndDelete;
}
};
ProfiledCPUMemoryReporter& profiledCPUMemoryReporter() {
static ProfiledCPUMemoryReporter reporter_;
return reporter_;
}
// QNNPACK AND XNNPACK may out-of-bound access the input and / or output
// tensors. This is by-design, and chosen to make the implementation of
// micro-kernels both simpler and faster as a result of not having to
// individually handle the corner cases where the number of processed elements
// is not a multiple of SIMD register width. This behavior will trigger ASAN
// though, and may result in a segfault if the accessed memory location just so
// happens to fall on a page the current process has no read access to. Here we
// define a custom allocator that allocates the extra storage required to keep
// this behavior safe. This allocator could have been restricted to QNNPACK and
// XNNPACK only, but that would have negative performance ramifications, as
// input tensors must now be reallocated, and copied over, if the tensor is not
// allocated with this allocator to begin with. Making this allocator the
// default on mobile builds minimizes the probability of unnecessary
// reallocations and copies, and also enables acceleration of operations where
// the output tensor is allocated outside of the function doing the
// implementation, wherein the implementation cannot simply re-allocate the
// output with the guarding allocator.
//
// PreGuardBytes: Number of guard bytes to allocate before the allocation.
// PostGuardBytes: Number of guard bytes to allocate after the allocation.
template <uint32_t PreGuardBytes, uint32_t PostGuardBytes>
class DefaultMobileCPUAllocator final : public at::Allocator {
public:
DefaultMobileCPUAllocator() = default;
// NOLINTNEXTLINE(modernize-use-override)
~DefaultMobileCPUAllocator() override = default;
static void deleter(void* const pointer) {
if (C10_UNLIKELY(!pointer)) {
return;
}
// TODO: enable with better TLS support on mobile
// profiledCPUMemoryReporter().Delete(pointer);
auto allocator_ptr = GetThreadLocalCachingAllocator();
auto profiling_allocator_ptr = GetThreadLocalProfilingAllocator();
if (allocator_ptr != nullptr) {
allocator_ptr->free(pointer);
} else if (profiling_allocator_ptr != nullptr) {
profiling_allocator_ptr->free(pointer);
} else {
c10::free_cpu(pointer);
// This adds extra cost to freeing memory to the default case when
// caching allocator is not enabled.
// NOLINTNEXTLINE(clang-analyzer-unix.Malloc)
CPUCachingAllocator::record_free(pointer);
auto allocation_planner = GetThreadLocalAllocationPlanner();
if (allocation_planner != nullptr) {
allocation_planner->record_free(pointer);
}
}
}
DataPtr allocate(const size_t nbytes) const override {
if (C10_UNLIKELY(0u == nbytes)) {
return {
nullptr,
nullptr,
&deleter,
at::Device(DeviceType::CPU),
};
}
auto alloc_size = PreGuardBytes + nbytes + PostGuardBytes;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
void* data;
auto allocator_ptr = GetThreadLocalCachingAllocator();
auto profiling_allocator_ptr = GetThreadLocalProfilingAllocator();
if (allocator_ptr != nullptr) {
data = allocator_ptr->allocate(alloc_size);
} else if (profiling_allocator_ptr != nullptr) {
data = profiling_allocator_ptr->allocate(alloc_size);
} else {
try {
data = c10::alloc_cpu(alloc_size);
} catch (c10::Error& e) {
profiledCPUMemoryReporter().OutOfMemory(alloc_size);
throw e;
}
auto allocation_planner = GetThreadLocalAllocationPlanner();
if (allocation_planner != nullptr) {
allocation_planner->record_allocation(alloc_size, data);
}
}
profiledCPUMemoryReporter().New(data, alloc_size);
return {
reinterpret_cast<uint8_t*>(data) + PreGuardBytes,
data,
&deleter,
at::Device(DeviceType::CPU),
};
}
DeleterFnPtr raw_deleter() const override {
return deleter;
}
};
void NoDelete(void*) {}
at::Allocator* GetCPUAllocator() {
return GetAllocator(DeviceType::CPU);
}
void SetCPUAllocator(at::Allocator* alloc, uint8_t priority) {
SetAllocator(DeviceType::CPU, alloc, priority);
}
// The Mobile CPU allocator must always be present even on non-mobile builds
// because QNNPACK and XNNPACK are not mobile specific.
//
// Pre-guard: 8 bytes for QNNPACK, but set to gAlignment to ensure SIMD
// alignment, not on the allocated memory, but memory location
// returned to the user.
// Post-guard: 16 bytes for XNNPACK.
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers,cppcoreguidelines-avoid-non-const-global-variables)
static DefaultMobileCPUAllocator<gAlignment, 16u> g_mobile_cpu_allocator;
at::Allocator* GetDefaultMobileCPUAllocator() {
return &g_mobile_cpu_allocator;
}
#ifdef C10_MOBILE
at::Allocator* GetDefaultCPUAllocator() {
return GetDefaultMobileCPUAllocator();
}
REGISTER_ALLOCATOR(DeviceType::CPU, &g_mobile_cpu_allocator);
#else
// Global default CPU Allocator
static DefaultCPUAllocator g_cpu_alloc;
at::Allocator* GetDefaultCPUAllocator() {
return &g_cpu_alloc;
}
REGISTER_ALLOCATOR(DeviceType::CPU, &g_cpu_alloc);
#endif /* C10_Mobile */
void ProfiledCPUMemoryReporter::New(void* ptr, size_t nbytes) {
if (nbytes == 0) {
return;
}
auto profile_memory = memoryProfilingEnabled();
size_t allocated = 0;
if (FLAGS_caffe2_report_cpu_memory_usage || profile_memory) {
std::lock_guard<std::mutex> guard(mutex_);
size_table_[ptr] = nbytes;
allocated_ += nbytes;
allocated = allocated_;
}
if (FLAGS_caffe2_report_cpu_memory_usage) {
LOG(INFO) << "C10 alloc " << nbytes << " bytes, total alloc " << allocated
<< " bytes.";
}
if (profile_memory) {
reportMemoryUsageToProfiler(
ptr, nbytes, allocated, 0, c10::Device(c10::DeviceType::CPU));
}
}
void ProfiledCPUMemoryReporter::Delete(void* ptr) {
size_t nbytes = 0;
auto profile_memory = memoryProfilingEnabled();
size_t allocated = 0;
if (FLAGS_caffe2_report_cpu_memory_usage || profile_memory) {
std::lock_guard<std::mutex> guard(mutex_);
auto it = size_table_.find(ptr);
if (it != size_table_.end()) {
allocated_ -= it->second;
allocated = allocated_;
nbytes = it->second;
size_table_.erase(it);
} else {
// C10_LOG_EVERY_MS might log every time in some builds,
// using a simple counter to avoid spammy logs
if (log_cnt_++ % 1000 == 0) {
LOG(WARNING) << "Memory block of unknown size was allocated before "
<< "the profiling started, profiler results will not "
<< "include the deallocation event";
}
}
}
if (nbytes == 0) {
return;
}
if (FLAGS_caffe2_report_cpu_memory_usage) {
LOG(INFO) << "C10 deleted " << nbytes << " bytes, total alloc " << allocated
<< " bytes.";
}
if (profile_memory) {
reportMemoryUsageToProfiler(
ptr, -nbytes, allocated, 0, c10::Device(c10::DeviceType::CPU));
}
}
void ProfiledCPUMemoryReporter::OutOfMemory(size_t nbytes) {
auto profile_memory = memoryProfilingEnabled();
size_t allocated = 0;
if (FLAGS_caffe2_report_cpu_memory_usage || profile_memory) {
std::lock_guard<std::mutex> guard(mutex_);
allocated = allocated_;
}
if (nbytes == 0) {
return;
}
if (FLAGS_caffe2_report_cpu_memory_usage) {
LOG(INFO) << "C10 Out of Memory. Trying to allocate " << nbytes
<< " bytes, total alloc " << allocated << " bytes.";
}
if (profile_memory) {
reportOutOfMemoryToProfiler(
static_cast<int64_t>(nbytes),
static_cast<int64_t>(allocated),
0,
c10::Device(c10::DeviceType::CPU));
}
}
C10_API at::Allocator* cpu_caching_alloc = nullptr;
C10_API uint8_t cpu_caching_alloc_priority = 0;
void SetCPUCachingAllocator(Allocator* alloc, uint8_t priority) {
if (priority >= cpu_caching_alloc_priority) {
cpu_caching_alloc = alloc;
cpu_caching_alloc_priority = priority;
}
}
Allocator* GetCPUCachingAllocator() {
if (cpu_caching_alloc == nullptr) {
VLOG(1)
<< "There is not caching allocator registered for CPU, use the default allocator instead.";
return GetAllocator(DeviceType::CPU);
}
return cpu_caching_alloc;
}
} // namespace c10
|