1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
#pragma once
#include <assert.h>
#include <stdint.h>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <utility>
#include <c10/core/OptionalRef.h>
#include <c10/core/ScalarType.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymInt.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/Half.h>
#include <c10/util/TypeCast.h>
#include <c10/util/intrusive_ptr.h>
C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wimplicit-int-float-conversion")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-int-float-conversion")
#endif
namespace c10 {
/**
* Scalar represents a 0-dimensional tensor which contains a single element.
* Unlike a tensor, numeric literals (in C++) are implicitly convertible to
* Scalar (which is why, for example, we provide both add(Tensor) and
* add(Scalar) overloads for many operations). It may also be used in
* circumstances where you statically know a tensor is 0-dim and single size,
* but don't know its type.
*/
class C10_API Scalar {
public:
Scalar() : Scalar(int64_t(0)) {}
void destroy() {
if (Tag::HAS_si == tag || Tag::HAS_sd == tag) {
raw::intrusive_ptr::decref(v.p);
v.p = nullptr;
}
}
~Scalar() {
destroy();
}
#define DEFINE_IMPLICIT_CTOR(type, name) \
Scalar(type vv) : Scalar(vv, true) {}
AT_FORALL_SCALAR_TYPES_AND3(Half, BFloat16, ComplexHalf, DEFINE_IMPLICIT_CTOR)
AT_FORALL_COMPLEX_TYPES(DEFINE_IMPLICIT_CTOR)
#undef DEFINE_IMPLICIT_CTOR
// Value* is both implicitly convertible to SymbolicVariable and bool which
// causes ambiguity error. Specialized constructor for bool resolves this
// problem.
template <
typename T,
typename std::enable_if<std::is_same<T, bool>::value, bool>::type* =
nullptr>
Scalar(T vv) : tag(Tag::HAS_b) {
v.i = convert<int64_t, bool>(vv);
}
#define DEFINE_ACCESSOR(type, name) \
type to##name() const { \
if (Tag::HAS_d == tag) { \
return checked_convert<type, double>(v.d, #type); \
} else if (Tag::HAS_z == tag) { \
return checked_convert<type, c10::complex<double>>(v.z, #type); \
} \
if (Tag::HAS_b == tag) { \
return checked_convert<type, bool>(v.i, #type); \
} else if (Tag::HAS_i == tag) { \
return checked_convert<type, int64_t>(v.i, #type); \
} else if (Tag::HAS_si == tag) { \
TORCH_CHECK(false, "tried to get " #name " out of SymInt") \
} else if (Tag::HAS_sd == tag) { \
TORCH_CHECK(false, "tried to get " #name " out of SymFloat") \
} \
TORCH_CHECK(false) \
}
// TODO: Support ComplexHalf accessor
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_ACCESSOR)
#undef DEFINE_ACCESSOR
SymInt toSymInt() const {
if (Tag::HAS_si == tag) {
return c10::SymInt::toSymInt(intrusive_ptr<SymIntNodeImpl>::reclaim_copy(
static_cast<SymIntNodeImpl*>(v.p)));
} else {
return toLong();
}
}
SymFloat toSymFloat() const {
if (Tag::HAS_sd == tag) {
return c10::SymFloat::toSymFloat(
intrusive_ptr<SymFloatNodeImpl>::reclaim_copy(
static_cast<SymFloatNodeImpl*>(v.p)));
} else {
return toLong();
}
}
// also support scalar.to<int64_t>();
// Deleted for unsupported types, but specialized below for supported types
template <typename T>
T to() const = delete;
// audit uses of data_ptr
const void* data_ptr() const {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return static_cast<const void*>(&v);
}
bool isFloatingPoint() const {
return Tag::HAS_d == tag || Tag::HAS_sd == tag;
}
C10_DEPRECATED_MESSAGE(
"isIntegral is deprecated. Please use the overload with 'includeBool' parameter instead.")
bool isIntegral() const {
return Tag::HAS_i == tag || Tag::HAS_si == tag;
}
bool isIntegral(bool includeBool) const {
return Tag::HAS_i == tag || Tag::HAS_si == tag ||
(includeBool && isBoolean());
}
bool isComplex() const {
return Tag::HAS_z == tag;
}
bool isBoolean() const {
return Tag::HAS_b == tag;
}
// you probably don't actually want these; they're mostly for testing
bool isSymInt() const {
return Tag::HAS_si == tag;
}
bool isSymFloat() const {
return Tag::HAS_sd == tag;
}
bool isSymbolic() const {
return Tag::HAS_si == tag || Tag::HAS_sd == tag;
}
C10_ALWAYS_INLINE Scalar& operator=(Scalar&& other) {
if (&other == this) {
return *this;
}
destroy();
moveFrom(std::move(other));
return *this;
}
C10_ALWAYS_INLINE Scalar& operator=(const Scalar& other) {
if (&other == this) {
return *this;
}
*this = Scalar(other);
return *this;
}
Scalar operator-() const;
Scalar conj() const;
Scalar log() const;
template <
typename T,
typename std::enable_if<!c10::is_complex<T>::value, int>::type = 0>
bool equal(T num) const {
if (isComplex()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
auto val = v.z;
return (val.real() == num) && (val.imag() == T());
} else if (isFloatingPoint()) {
TORCH_CHECK(!isSymbolic(), "NYI SymFloat equality");
return v.d == num;
} else if (isIntegral(/*includeBool=*/false)) {
TORCH_CHECK(!isSymbolic(), "NYI SymInt equality");
return v.i == num;
} else if (isBoolean()) {
// boolean scalar does not equal to a non boolean value
TORCH_INTERNAL_ASSERT(!isSymbolic());
return false;
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
template <
typename T,
typename std::enable_if<c10::is_complex<T>::value, int>::type = 0>
bool equal(T num) const {
if (isComplex()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return v.z == num;
} else if (isFloatingPoint()) {
TORCH_CHECK(!isSymbolic(), "NYI SymFloat equality");
return (v.d == num.real()) && (num.imag() == T());
} else if (isIntegral(/*includeBool=*/false)) {
TORCH_CHECK(!isSymbolic(), "NYI SymInt equality");
return (v.i == num.real()) && (num.imag() == T());
} else if (isBoolean()) {
// boolean scalar does not equal to a non boolean value
TORCH_INTERNAL_ASSERT(!isSymbolic());
return false;
} else {
TORCH_INTERNAL_ASSERT(false);
}
}
bool equal(bool num) const {
if (isBoolean()) {
TORCH_INTERNAL_ASSERT(!isSymbolic());
return static_cast<bool>(v.i) == num;
} else {
return false;
}
}
ScalarType type() const {
if (isComplex()) {
return ScalarType::ComplexDouble;
} else if (isFloatingPoint()) {
return ScalarType::Double;
} else if (isIntegral(/*includeBool=*/false)) {
return ScalarType::Long;
} else if (isBoolean()) {
return ScalarType::Bool;
} else {
throw std::runtime_error("Unknown scalar type.");
}
}
Scalar(Scalar&& rhs) noexcept : tag(rhs.tag) {
moveFrom(std::move(rhs));
}
Scalar(const Scalar& rhs) : tag(rhs.tag), v(rhs.v) {
if (isSymbolic()) {
c10::raw::intrusive_ptr::incref(v.p);
}
}
Scalar(c10::SymInt si) {
if (si.is_symbolic()) {
tag = Tag::HAS_si;
v.p = std::move(si).release();
} else {
tag = Tag::HAS_i;
v.i = si.as_int_unchecked();
}
}
Scalar(c10::SymFloat sd) {
if (sd.is_symbolic()) {
tag = Tag::HAS_sd;
v.p = std::move(sd).release();
} else {
tag = Tag::HAS_d;
v.d = sd.as_float_unchecked();
}
}
// We can't set v in the initializer list using the
// syntax v{ .member = ... } because it doesn't work on MSVC
private:
enum class Tag { HAS_d, HAS_i, HAS_z, HAS_b, HAS_sd, HAS_si };
// NB: assumes that self has already been cleared
C10_ALWAYS_INLINE void moveFrom(Scalar&& rhs) noexcept {
v = rhs.v;
tag = rhs.tag;
if (rhs.tag == Tag::HAS_si || rhs.tag == Tag::HAS_sd) {
// Move out of scalar
rhs.tag = Tag::HAS_i;
rhs.v.i = 0;
}
}
Tag tag;
union v_t {
double d;
int64_t i;
c10::complex<double> z;
c10::intrusive_ptr_target* p;
v_t() {} // default constructor
} v;
template <
typename T,
typename std::enable_if<
std::is_integral<T>::value && !std::is_same<T, bool>::value,
bool>::type* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_i) {
v.i = convert<decltype(v.i), T>(vv);
}
template <
typename T,
typename std::enable_if<
!std::is_integral<T>::value && !c10::is_complex<T>::value,
bool>::type* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_d) {
v.d = convert<decltype(v.d), T>(vv);
}
template <
typename T,
typename std::enable_if<c10::is_complex<T>::value, bool>::type* = nullptr>
Scalar(T vv, bool) : tag(Tag::HAS_z) {
v.z = convert<decltype(v.z), T>(vv);
}
};
using OptionalScalarRef = c10::OptionalRef<Scalar>;
// define the scalar.to<int64_t>() specializations
#define DEFINE_TO(T, name) \
template <> \
inline T Scalar::to<T>() const { \
return to##name(); \
}
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX(DEFINE_TO)
#undef DEFINE_TO
} // namespace c10
C10_CLANG_DIAGNOSTIC_POP()
|