File: StorageImpl.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (226 lines) | stat: -rw-r--r-- 6,321 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
#pragma once

#include <c10/core/Allocator.h>
#include <c10/core/ScalarType.h>
#include <c10/core/SymInt.h>

#include <c10/util/intrusive_ptr.h>

namespace c10 {

// A storage represents the underlying backing data buffer for a
// tensor.  This concept was inherited from the original Torch7
// codebase; we'd kind of like to get rid of the concept
// (see https://github.com/pytorch/pytorch/issues/14797) but
// it's hard work and no one has gotten around to doing it.
//
// NB: storage is supposed to uniquely own a data pointer; e.g.,
// two non-null data pointers alias if and only if they are from
// the same storage.  Technically you can violate this invariant
// (e.g., you can create a non-owning StorageImpl with at::from_blob)
// but a lot of things won't work correctly, including:
//
// - An ordinary deleter on such a storage is wrong, because normal deleters
//   assume unique ownership, but if you have two storages at the same data,
//   that implies there is some sort of shared ownership. So your deleter would
//   have to actually be internally doing some sort of refcount thing
// - Deepcopy in Python side relies on storage equality and not data pointer
//   equality; so if there are two separate storages pointing to the same data,
//   the data will actually get duplicated in that case (one data ptr before,
//   two data ptrs after)
// - Version counts won't work correctly, because we do all VC tracking at the
//   level of storages (unless you explicitly disconnect the VC with detach);
//   mutation because data pointers are the same are totally untracked
struct C10_API StorageImpl : public c10::intrusive_ptr_target {
 public:
  struct use_byte_size_t {};

  StorageImpl(
      use_byte_size_t /*use_byte_size*/,
      SymInt size_bytes,
      at::DataPtr data_ptr,
      at::Allocator* allocator,
      bool resizable)
      : data_ptr_(std::move(data_ptr)),
        size_bytes_(std::move(size_bytes)),
        size_bytes_is_symbolic_(size_bytes_.is_symbolic()),
        resizable_(resizable),
        received_cuda_(false),
        allocator_(allocator) {
    if (resizable) {
      TORCH_INTERNAL_ASSERT(
          allocator_, "For resizable storage, allocator must be provided");
    }
  }

  StorageImpl(
      use_byte_size_t /*use_byte_size*/,
      SymInt size_bytes,
      at::Allocator* allocator,
      bool resizable)
      : StorageImpl(
            use_byte_size_t(),
            size_bytes,
            size_bytes.is_symbolic()
                ? allocator->allocate(0)
                : allocator->allocate(size_bytes.as_int_unchecked()),
            allocator,
            resizable) {}

  StorageImpl& operator=(StorageImpl&& other) = default;
  StorageImpl& operator=(const StorageImpl&) = delete;
  StorageImpl() = delete;
  StorageImpl(StorageImpl&& other) = default;
  StorageImpl(const StorageImpl&) = delete;
  ~StorageImpl() override = default;

  void reset() {
    data_ptr_.clear();
    size_bytes_ = 0;
    size_bytes_is_symbolic_ = false;
  }

  template <typename T>
  inline T* data() const {
    return unsafe_data<T>();
  }

  template <typename T>
  inline T* unsafe_data() const {
    return static_cast<T*>(this->data_ptr_.get());
  }

  // Destructor doesn't call release_resources because it's
  // unnecessary; don't forget to change that if needed!
  void release_resources() override {
    data_ptr_.clear();
  }

  size_t nbytes() const {
    TORCH_CHECK(!size_bytes_is_symbolic_);
    return size_bytes_.as_int_unchecked();
  }

  SymInt sym_nbytes() const {
    return size_bytes_;
  }

  // TODO: remove later
  void set_nbytes(size_t size_bytes) {
    size_bytes_ = size_bytes;
    size_bytes_is_symbolic_ = false;
  }

  void set_nbytes(c10::SymInt size_bytes) {
    size_bytes_ = size_bytes;
  }

  bool resizable() const {
    return resizable_;
  };

  at::DataPtr& data_ptr() {
    return data_ptr_;
  };

  const at::DataPtr& data_ptr() const {
    return data_ptr_;
  };

  // Returns the previous data_ptr
  at::DataPtr set_data_ptr(at::DataPtr&& data_ptr) {
    at::DataPtr old_data_ptr(std::move(data_ptr_));
    data_ptr_ = std::move(data_ptr);
    return old_data_ptr;
  };

  void set_data_ptr_noswap(at::DataPtr&& data_ptr) {
    data_ptr_ = std::move(data_ptr);
  }

  // TODO: Return const ptr eventually if possible
  void* data() {
    return data_ptr_.get();
  }

  void* data() const {
    return data_ptr_.get();
  }

  at::DeviceType device_type() const {
    return data_ptr_.device().type();
  }

  at::Allocator* allocator() {
    return allocator_;
  }

  const at::Allocator* allocator() const {
    return allocator_;
  };

  // You generally shouldn't use this method, but it is occasionally
  // useful if you want to override how a tensor will be reallocated,
  // after it was already allocated (and its initial allocator was
  // set)
  void set_allocator(at::Allocator* allocator) {
    allocator_ = allocator;
  }

  Device device() const {
    return data_ptr_.device();
  }

  void set_resizable(bool resizable) {
    if (resizable) {
      // We need an allocator to be resizable
      AT_ASSERT(allocator_);
    }
    resizable_ = resizable;
  }

  /**
   * Can only be called when use_count is 1
   */
  void UniqueStorageShareExternalPointer(
      void* src,
      size_t size_bytes,
      DeleterFnPtr d = nullptr) {
    UniqueStorageShareExternalPointer(
        at::DataPtr(src, src, d, data_ptr_.device()), size_bytes);
  }

  /**
   * Can only be called when use_count is 1
   */
  void UniqueStorageShareExternalPointer(
      at::DataPtr&& data_ptr,
      size_t size_bytes) {
    data_ptr_ = std::move(data_ptr);
    size_bytes_ = size_bytes;
    size_bytes_is_symbolic_ = false;
    allocator_ = nullptr;
    resizable_ = false;
  }

  // This method can be used only after storage construction and cannot be used
  // to modify storage status
  void set_received_cuda(bool received_cuda) {
    received_cuda_ = received_cuda;
  }

  bool received_cuda() {
    return received_cuda_;
  }

 private:
  DataPtr data_ptr_;
  SymInt size_bytes_;
  bool size_bytes_is_symbolic_;
  bool resizable_;
  // Identifies that Storage was received from another process and doesn't have
  // local to process cuda memory allocation
  bool received_cuda_;
  Allocator* allocator_;
};
} // namespace c10