1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
|
#pragma once
#include <c10/core/Backend.h>
#include <c10/core/CopyBytes.h>
#include <c10/core/DispatchKeySet.h>
#include <c10/core/InferenceMode.h>
#include <c10/core/MemoryFormat.h>
#include <c10/core/Storage.h>
#include <c10/core/SymIntArrayRef.h>
#include <c10/core/TensorOptions.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/core/impl/LocalDispatchKeySet.h>
#include <c10/core/impl/PyInterpreter.h>
#include <c10/core/impl/SizesAndStrides.h>
#include <c10/util/DimVector.h>
#include <c10/util/Exception.h>
#include <c10/util/Flags.h>
#include <c10/util/Logging.h>
#include <c10/util/Optional.h>
#include <c10/util/accumulate.h>
#include <c10/util/irange.h>
#include <c10/util/python_stub.h>
#include <c10/util/safe_numerics.h>
#include <c10/util/strong_type.h>
#include <algorithm>
#include <atomic>
#include <limits>
#include <memory>
#include <numeric>
// A global boolean variable to control whether we free memory when a Tensor
// is shrunk to a smaller size. As a result, a Tensor is always going to
// keep the memory allocated for its maximum capacity reshaped to so far.
//
// This parameter is respected "upper-case" methods which call Resize()
// (e.g., CopyFrom, ResizeLike); it is NOT respected by Tensor::resize_
// or ShrinkTo, both of which guarantee to never to free memory.
C10_DECLARE_bool(caffe2_keep_on_shrink);
// Since we can have high variance in blob memory allocated across different
// inputs in the same run, we will shrink the blob only if the memory gain
// is larger than this flag in bytes. This only applies to functions which
// respect caffe2_keep_on_shrink.
C10_DECLARE_int64(caffe2_max_keep_on_shrink_memory);
C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wimplicit-int-float-conversion")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wimplicit-int-float-conversion")
#endif
namespace at {
class Tensor;
class TensorBase;
} // namespace at
namespace c10 {
class Scalar;
struct Storage;
} // namespace c10
namespace c10 {
/**
* A utility function to convert vector<int> to vector<int64_t>.
*/
inline std::vector<int64_t> ToVectorint64_t(const ArrayRef<int>& src) {
return std::vector<int64_t>(src.begin(), src.end());
}
/**
* Return product of all dimensions starting from k
*/
inline int64_t size_from_dim_(int k, IntArrayRef dims) {
int64_t r = 1;
for (const auto i : c10::irange(k, dims.size())) {
r *= dims[i];
}
return r;
}
// Product of all dims up to k (not including dims[k])
inline int64_t size_to_dim_(int k, IntArrayRef dims) {
TORCH_CHECK((unsigned)k <= dims.size());
int64_t r = 1;
for (const auto i : c10::irange(k)) {
r *= dims[i];
}
return r;
}
// Product of all dims between k and l (not including dims[k] and dims[l])
inline int64_t size_between_dim_(int k, int l, IntArrayRef dims) {
TORCH_CHECK((unsigned)l < dims.size() && (unsigned)k < dims.size());
int64_t r = 1;
if (k < l) {
for (int i = k + 1; i < l; ++i) {
r *= dims[i];
}
} else {
for (int i = l + 1; i < k; ++i) {
r *= dims[i];
}
}
return r;
}
// Wrap around axis_index if it is negative, s.t., -1 is the last dim
inline int canonical_axis_index_(int axis_index, int ndims) {
TORCH_CHECK(axis_index >= -ndims);
TORCH_CHECK(axis_index < ndims);
if (axis_index < 0) {
return axis_index + ndims;
}
return axis_index;
}
using PlacementDtor = void (*)(void*, size_t);
/*
* A Context that will call extra placement deleter during
* deconstruction.
*
* Accept a already constructed DataPtr and store it as member
* during destruction, we'll call extra deleter on the underlying
* data pointer before the DataPtr is destructed.
* `data_ptr_` owns the memory.
*/
struct C10_API PlacementDeleteContext {
DataPtr data_ptr_;
PlacementDtor placement_dtor_;
size_t size_;
PlacementDeleteContext(
DataPtr&& data_ptr,
PlacementDtor placement_dtor,
size_t size)
: data_ptr_(std::move(data_ptr)),
placement_dtor_(placement_dtor),
size_(size) {}
static DataPtr makeDataPtr(
DataPtr&& data_ptr,
PlacementDtor placement_dtor,
size_t size,
Device device);
~PlacementDeleteContext() {
placement_dtor_(data_ptr_.get(), size_);
// original memory will be freed when data_ptr_ is destructed
}
};
struct TensorImpl;
struct C10_API AutogradMetaInterface {
virtual void set_requires_grad(
bool requires_grad,
at::TensorImpl* self_impl) = 0;
virtual bool requires_grad() const = 0;
virtual at::Tensor& mutable_grad() = 0;
virtual const at::Tensor& grad() const = 0;
virtual const at::Tensor& fw_grad(uint64_t level, const at::TensorBase& self)
const = 0;
virtual void set_fw_grad(
const at::TensorBase& new_grad,
const at::TensorBase& self,
uint64_t level,
bool is_inplace_op) = 0;
virtual ~AutogradMetaInterface();
};
namespace impl {
// Unfortunately, the definition of AutogradMeta lives in a separate
// compilation unit than TensorImpl (libtorch.so versus libc10.so)
// which means that we cannot construct an AutogradMeta from TensorImpl,
// not even from the cpp file. So we have to indirect it through a factory
// function which will be initialized when we load libtorch.so.
struct C10_API AutogradMetaFactory {
virtual ~AutogradMetaFactory() = default;
virtual std::unique_ptr<AutogradMetaInterface> make() const = 0;
// This method is the dumbest method. But I don't have access
// to Tensor (not TensorImpl) which is undefined in this header.
virtual const at::Tensor& undefined_tensor() const = 0;
};
C10_API void SetAutogradMetaFactory(AutogradMetaFactory* factory);
C10_API AutogradMetaFactory* GetAutogradMetaFactory();
struct C10_API AutogradMetaFactoryRegisterer {
explicit AutogradMetaFactoryRegisterer(AutogradMetaFactory* factory) {
SetAutogradMetaFactory(factory);
}
};
// PyInterpreterStatus describes what the state of its interpreter tag
// is, relative to the thread currently holding the GIL.
enum class PyInterpreterStatus {
// We just allocated the Tensor, it hasn't escaped to other threads,
// we know that it definitely hasn't been tagged to be associated
// with an interpreter.
DEFINITELY_UNINITIALIZED,
// We queried the interpreter field and it looked uninitialized. But
// another thread may have raced with us to tag it with some other
// interpreter id. So we will have to do a CEX to make sure we can
// actually nab it.
MAYBE_UNINITIALIZED,
// We queried the interpreter field and it was tagged to belong to us.
// This means we have sole write access (as we hold the GIL for this
// interpreter)
TAGGED_BY_US,
// Someone else tagged this. We can't use this TensorImpl from Python.
TAGGED_BY_OTHER,
};
} // namespace impl
struct C10_API NamedTensorMetaInterface {
virtual ~NamedTensorMetaInterface(){};
virtual std::unique_ptr<NamedTensorMetaInterface> clone() const {
TORCH_INTERNAL_ASSERT(
false, "Not implemented: NamedTensorMetaInterface::clone");
};
virtual int64_t slow_dim() const {
TORCH_INTERNAL_ASSERT(
false, "Not implemented: NamedTensorMetaInterface::slow_dim");
};
};
template <typename T>
using strong_bool = strong::
type<bool, T, strong::regular, strong::iostreamable, strong::boolean>;
// For ease of copy pasting
#if 0
is_contiguous
is_channels_last_contiguous
is_channels_last_3d_contiguous
is_channels_last
is_channels_last_3d
is_non_overlapping_and_dense
#endif
using bool_is_contiguous = strong_bool<struct bool_is_contiguous_>;
using bool_is_channels_last_contiguous =
strong_bool<struct bool_is_channels_last_contiguous_>;
using bool_is_channels_last_3d_contiguous =
strong_bool<struct bool_is_channels_last_3d_contiguous_>;
using bool_is_channels_last = strong_bool<struct bool_is_channels_last_>;
using bool_is_channels_last_3d = strong_bool<struct bool_is_channels_last_3d_>;
using bool_is_non_overlapping_and_dense =
strong_bool<struct bool_is_non_overlapping_and_dense_>;
struct C10_API ExtraMeta {
SymDimVector sizes_ = {0};
SymDimVector strides_ = {1};
SymInt numel_ = 1;
SymInt storage_offset_ = 0;
// TODO: make these all SymBool
bool_is_contiguous is_contiguous_{true};
bool_is_channels_last_contiguous is_channels_last_contiguous_{false};
bool_is_channels_last_3d_contiguous is_channels_last_3d_contiguous_{false};
bool_is_channels_last is_channels_last_{false};
bool_is_channels_last_3d is_channels_last_3d_{false};
bool_is_non_overlapping_and_dense is_non_overlapping_and_dense_{true};
std::unique_ptr<c10::NamedTensorMetaInterface> named_tensor_meta_ = nullptr;
ExtraMeta() {}
ExtraMeta(
SymDimVector sizes,
SymDimVector strides,
SymInt numel,
SymInt storage_offset,
bool_is_contiguous is_contiguous,
bool_is_channels_last_contiguous is_channels_last_contiguous,
bool_is_channels_last_3d_contiguous is_channels_last_3d_contiguous,
bool_is_channels_last is_channels_last,
bool_is_channels_last_3d is_channels_last_3d,
bool_is_non_overlapping_and_dense is_non_overlapping_and_dense,
std::unique_ptr<c10::NamedTensorMetaInterface> named_tensor_meta)
: sizes_(std::move(sizes)),
strides_(std::move(strides)),
numel_(std::move(numel)),
storage_offset_(std::move(storage_offset)),
is_contiguous_(is_contiguous),
is_channels_last_contiguous_(is_channels_last_contiguous),
is_channels_last_3d_contiguous_(is_channels_last_3d_contiguous),
is_channels_last_(is_channels_last),
is_channels_last_3d_(is_channels_last_3d),
is_non_overlapping_and_dense_(is_non_overlapping_and_dense),
named_tensor_meta_(std::move(named_tensor_meta)) {}
std::unique_ptr<ExtraMeta> clone() const {
return std::make_unique<ExtraMeta>(
sizes_,
strides_,
numel_,
storage_offset_,
is_contiguous_,
is_channels_last_contiguous_,
is_channels_last_3d_contiguous_,
is_channels_last_,
is_channels_last_3d_,
is_non_overlapping_and_dense_,
named_tensor_meta_ ? named_tensor_meta_->clone() : nullptr);
}
};
// NOTE [ Version Counter Sharing ]
//
// Every Tensor has a version counter. Version counters are incremented whenever
// the data or size of a tensor changes through in-place Variable operations.
// Version counters are used to detect modifications to saved variables which
// would result in incorrect gradient calculations. Version counters may be
// shared between Variables:
//
// 1. A view shares the version counter of the base Variable,
// 2. `x.detach()` shares the version counter of `x`,
// 3. Unpacked saved variables share the version counter of the source.
//
// Version counters are not shared in these scenarios:
//
// 1. When we replace a `Variable`'s underlying `Tensor` by calling
// `set_data(...)`,
// 2. `x.data` does not share the version counter of `x`. (See discussion at
// https://github.com/pytorch/pytorch/issues/5396)
//
// Question: Why do we put the version counter in TensorImpl instead of
// AutogradMeta?
//
// Answer: After the Variable/Tensor merge, a tensor will not have AutogradMeta
// when its `requires_grad_` is false, but when we use this tensor in the
// forward pass of a function that requires saving this tensor for backward, we
// need to keep track of this tensor's version to make sure it's always valid in
// the autograd graph.
//
// To achieve this goal, we put the version counter in TensorImpl instead of
// AutogradMeta, and have it always be available. This allows us to have the
// optimization of not carrying AutogradMeta when a tensor doesn't require
// gradient.
//
// A hypothetical alternative way to achieve this goal is to initialize
// AutogradMeta and create the version counter for the non-requires-grad tensor
// only when it's saved for backward. However, since saving a tensor for
// backward happens in the forward pass, and our invariant is that forward pass
// needs to be thread-safe, lazy-initializing AutogradMeta when saving a tensor
// can introduce race conditions when we are running the forward pass in
// multi-thread scenarios, thus making the forward pass not thread-safe anymore,
// which breaks the invariant.
struct C10_API VariableVersion {
private:
struct VersionCounter : intrusive_ptr_target {
VersionCounter(uint32_t version) : version_(version) {}
std::atomic<uint32_t> version_;
};
c10::intrusive_ptr<VersionCounter> version_counter_;
public:
// Note [Disabled VariableVersion]
// VariableVersion struct has an intrusive_ptr pointing VersionCounter struct
// with an atomic variable. Thus `VariableVersion(/*version=*/0)` is not as
// cheap as we expected. In some cases constructing a VariableVersion with
// version 0 is not necessary so we add a cheap constructor which
// doesn't allocate the intrusive_ptr.
// Example use cases are:
// - Inference tensors don't track version counter, so they'll just always
// have disbaled VariableVersion.
// - In SavedVariable class we override version_counter_ inside its
// construtor
// so that we can use the cheap constructor there.
enum Disabled { DISABLED };
// It's okay to return true even for inference tensor which
// doesn't have version counter enabled.
// We want to be permissive here since in many cases (e.g. make_variable)
// we can std::move a TensorImpl if there's no other uses which saves us
// an additional TensorImpl allocation.
bool unique() const {
return version_counter_ ? 1 == version_counter_.use_count() : true;
}
// NOTE: As of C++11 and 14, default-constructing a std::atomic variable
// leaves it in a persistently undefined state. See
// https://cplusplus.github.io/LWG/issue2334.
VariableVersion(uint32_t version)
: version_counter_(c10::make_intrusive<VersionCounter>(version)) {}
VariableVersion(Disabled = DISABLED) {}
bool enabled() const {
return version_counter_;
}
// Note [Inplace update inference tensor]
// 1. Inplace update to inference tensor is forbidden in normal mode.
// For example:
// inference_tensor.copy_(normal_tensor_requires_grad)
// This inplace makes inference_tensor have requires_grad=True and
// have a grad_fn. This is bad because views of `inference_tensor`
// created in InferenceMode won't be able to know the grad_fn since
// their ViewMeta were not recorded. To match NoGradMode behavior
// that "inplace update to a view created in NoGradMode raise an error",
// we just ban inplace update to inference tensor since we can't tell
// if an inference tensor is a view created in InferenceMode.
//
// Note that views of normal tensor created in InferenceMode has proper
// ViewMeta so that they're aware of the grad_fn correctly.
//
// 2. Inplace update to inference tensor in inference tensor doesn't bump
// version counter.
// * It either doesn't call bump() by skipping ADInplaceOrView kernel,
// - e.g. inference_tensor.add_(1)
// * or bump() is a no-op for inference tensor.
// - e.g. inference_tensor.add_(normal_tensor)
void bump() {
// TODO: Replace the link to the documentation once it's available.
TORCH_CHECK(
version_counter_ || InferenceMode::is_enabled(),
"Inplace update to inference tensor outside InferenceMode is not allowed."
"You can make a clone to get a normal tensor before doing inplace update."
"See https://github.com/pytorch/rfcs/pull/17 for more details.");
if (version_counter_) {
++version_counter_->version_;
}
}
// Inference tensor doesn't have version counter so it shouldn't be
// accessed.
uint32_t current_version() const {
TORCH_CHECK(
version_counter_, "Inference tensors do not track version counter.");
return version_counter_->version_;
}
};
// Forward declaration of TensorImpl needed for forward declaration of
// C10_TensorImpl_Size_Check_Dummy_Class
struct C10_API TensorImpl;
// Forward declaration needed because TensorImpl needs to be friends with
// C10_TensorImpl_Size_Check_Dummy_Class in order to check the size
// of its private fields.
template <
size_t cplusplus,
size_t clang_ver_major,
size_t gcc_ver,
size_t gcc_ver_minor,
size_t nvcc,
size_t cuda_version,
size_t cuda_version_major,
size_t ptr_size>
class C10_TensorImpl_Size_Check_Dummy_Class;
/**
* NOTE: Some TensorImpl methods are small and not overridden in the
* PyTorch codebase itself, but may theoretically need to be
* overridden by third-party TensorImpl subclasses. This macro allows
* users that need maximum performance and don't need these extension
* points to disable them with a build-time flag. (In particular,
* XLA's XLATensorImpl currently overrides these methods, so we can't
* enable this flag by default.)
*/
#ifdef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
#define TENSORIMPL_MAYBE_VIRTUAL
#else
#define TENSORIMPL_MAYBE_VIRTUAL virtual
#endif
/**
* The low-level representation of a tensor, which contains a pointer
* to a storage (which contains the actual data) and metadata (e.g., sizes and
* strides) describing this particular view of the data as a tensor.
*
* Some basic characteristics about our in-memory representation of
* tensors:
*
* - It contains a pointer to a storage struct (Storage/StorageImpl)
* which contains the pointer to the actual data and records the
* data type and device of the view. This allows multiple tensors
* to alias the same underlying data, which allows to efficiently
* implement differing *views* on a tensor.
*
* - The tensor struct itself records view-specific metadata about
* the tensor, e.g., sizes, strides and offset into storage.
* Each view of a storage can have a different size or offset.
*
* - This class is intrusively refcounted. It is refcounted so that
* we can support prompt deallocation of large tensors; it is
* intrusively refcounted so that we can still perform reference
* counted operations on raw pointers, which is often more convenient
* when passing tensors across language boundaries.
*
* - For backwards-compatibility reasons, a tensor may be in an
* uninitialized state. A tensor may be uninitialized in the following
* two ways:
*
* - A tensor may be DTYPE UNINITIALIZED. A tensor of this
* form has an uninitialized dtype. This situation most
* frequently arises when a user writes Tensor x(CPU). The dtype
* is subsequently initialized when mutable_data<T>() is
* invoked for the first time.
*
* - A tensor may be STORAGE UNINITIALIZED. A tensor of this form
* has non-zero size, but has a storage with a null data pointer.
* This situation most frequently arises when a user calls
* Resize() or FreeMemory(). This is because Caffe2 historically
* does lazy allocation: allocation of data doesn't occur until
* mutable_data<T>() is invoked. A tensor with zero size is
* always storage initialized, because no allocation is necessary
* in this case.
*
* All combinations of these two uninitialized states are possible.
* Consider the following transcript in idiomatic Caffe2 API:
*
* Tensor x(CPU); // x is storage-initialized, dtype-UNINITIALIZED
* x.Resize(4); // x is storage-UNINITIALIZED, dtype-UNINITIALIZED
* x.mutable_data<float>(); // x is storage-initialized, dtype-initialized
* x.FreeMemory(); // x is storage-UNINITIALIZED, dtype-initialized.
*
* All other fields on tensor are always initialized. In particular,
* size is always valid. (Historically, a tensor declared as Tensor x(CPU)
* also had uninitialized size, encoded as numel == -1, but we have now
* decided to default to zero size, resulting in numel == 0).
*
* Uninitialized storages MUST be uniquely owned, to keep our model
* simple. Thus, we will reject operations which could cause an
* uninitialized storage to become shared (or a shared storage to
* become uninitialized, e.g., from FreeMemory).
*
* In practice, tensors which are storage-UNINITIALIZED and
* dtype-UNINITIALIZED are *extremely* ephemeral: essentially,
* after you do a Resize(), you basically always call mutable_data()
* immediately afterwards. Most functions are not designed to
* work if given a storage-UNINITIALIZED, dtype-UNINITIALIZED tensor.
*
* We intend to eliminate all uninitialized states, so that every
* tensor is fully initialized in all fields. Please do not write new code
* that depends on these uninitialized states.
*/
struct C10_API TensorImpl : public c10::intrusive_ptr_target {
TensorImpl() = delete;
virtual ~TensorImpl() override;
// Note [Enum ImplType]
// This enum is temporary. In the followup refactor we should
// think about how to specialize TensorImpl creation for view
// tensors. Currently we only special case its key_set_ but
// there's also potential to share version_counter_ directly
// without creating first and then override in as_view.
enum ImplType { VIEW };
/**
* Construct a 1-dim 0-size tensor backed by the given storage.
*/
TensorImpl(
Storage&& storage,
DispatchKeySet,
const caffe2::TypeMeta data_type);
// See Note [Enum ImplType]
TensorImpl(
ImplType,
Storage&& storage,
DispatchKeySet,
const caffe2::TypeMeta data_type);
/**
* Construct a 1-dim 0 size tensor that doesn't have a storage.
*/
TensorImpl(
DispatchKeySet,
const caffe2::TypeMeta data_type,
c10::optional<c10::Device> device_opt);
// Legacy constructors so I don't have to go update call sites.
// TODO: When Variable is added, delete these constructors
TensorImpl(
Storage&& storage,
DispatchKey dispatch_key,
const caffe2::TypeMeta data_type)
: TensorImpl(
std::move(storage),
DispatchKeySet(dispatch_key),
data_type) {}
TensorImpl(
DispatchKey dispatch_key,
const caffe2::TypeMeta data_type,
c10::optional<c10::Device> device_opt)
: TensorImpl(DispatchKeySet(dispatch_key), data_type, device_opt) {}
private:
// This constructor is private, because the data_type is redundant with
// storage. Still, we pass it in separately because it's easier to write
// the initializer list if we're not worried about storage being moved out
// from under us.
TensorImpl(
Storage&& storage,
DispatchKeySet,
const caffe2::TypeMeta data_type,
c10::optional<c10::Device>);
public:
TensorImpl(const TensorImpl&) = delete;
TensorImpl& operator=(const TensorImpl&) = delete;
TensorImpl(TensorImpl&&) = delete;
TensorImpl& operator=(TensorImpl&&) = delete;
/**
* Release (decref) storage, and any other external allocations. This
* override is for `intrusive_ptr_target` and is used to implement weak
* tensors.
*/
void release_resources() override;
private:
void destroy_pyobj_if_needed();
public:
/**
* Return the DispatchKeySet corresponding to this Tensor, specifying
* all of the DispatchKeys that this Tensor identifies as. This is the
* information used to dispatch operations on this tensor.
*/
DispatchKeySet key_set() const {
return key_set_;
}
// NOTE: The general recipe for customizable methods is that the fastpath
// function (e.g., sizes()) does an unlikely policy test, and if doesn't
// trigger, it does the fast path implementation with no checks and going
// directly to on-TensorImpl fields. In particular, you never need to
// check ExtraMeta if the policy doesn't trigger, as non-trivial ExtraMeta
// implies the policy will always match.
//
// The default implementations of methods are "safe": they do extra tests
// to make sure the internal state is consistent no matter if you are
// doing symbolic shapes or not. If you don't want the tests, directly
// override the custom method (e.g., custom_sizes()) to do your preferred
// behavior.
public:
/**
* Return a reference to the sizes of this tensor. This reference remains
* valid as long as the tensor is live and not resized.
*/
IntArrayRef sizes() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return sizes_custom();
}
return sizes_and_strides_.sizes_arrayref();
}
SymIntArrayRef sym_sizes() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return sym_sizes_custom();
}
// Sizes guaranteed to be non-negative, so unchecked cast is OK
return c10::fromIntArrayRefKnownNonNegative(
sizes_and_strides_.sizes_arrayref());
}
IntArrayRef sizes_default() const {
// TODO: force backtrace to be printed on this error
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Cannot call sizes() on tensor with symbolic sizes/strides");
return sizes_and_strides_.sizes_arrayref();
}
SymIntArrayRef sym_sizes_default() const {
if (has_symbolic_sizes_strides_) {
return extra_meta_->sizes_;
} else {
// Sizes guaranteed to be non-negative, so unchecked cast is OK
return c10::fromIntArrayRefKnownNonNegative(sizes_default());
}
}
/**
* The number of elements in a tensor.
*
* WARNING: Previously, if you were using the Caffe2 API, you could
* test numel() == -1 to see if a tensor was uninitialized. This
* is no longer true; numel always accurately reports the product
* of sizes of a tensor.
*/
int64_t numel() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return numel_custom();
}
return numel_;
}
c10::SymInt sym_numel() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return sym_numel_custom();
}
return c10::SymInt(SymInt::UNCHECKED, numel_);
}
int64_t numel_default() const {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Cannot call numel() on tensor with symbolic sizes/strides");
return numel_;
}
c10::SymInt sym_numel_default() const {
if (has_symbolic_sizes_strides_) {
return extra_meta_->numel_;
} else {
return c10::SymInt(SymInt::UNCHECKED, numel_);
}
}
/**
* Return the number of dimensions of this tensor. Note that 0-dimension
* represents a Tensor that is a Scalar, e.g., one that has a single element.
*/
int64_t dim() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return dim_custom();
}
return sizes_and_strides_.size();
}
int64_t dim_default() const {
if (has_symbolic_sizes_strides_) {
return extra_meta_->sizes_.size();
} else {
return sizes_and_strides_.size();
}
}
/**
* Return the offset in number of elements into the storage that this
* tensor points to. Most tensors have storage_offset() == 0, but,
* for example, an index into a tensor will have a non-zero storage_offset().
*
* WARNING: This is NOT computed in bytes.
*/
int64_t storage_offset() const {
// TODO: maybe this should be toggled by strides
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return storage_offset_custom();
}
return storage_offset_;
}
c10::SymInt sym_storage_offset() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return sym_storage_offset_custom();
}
return c10::SymInt(SymInt::UNCHECKED, storage_offset_);
}
int64_t storage_offset_default() const {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Cannot call storage_offset() on tensor with symbolic sizes/strides");
return storage_offset_;
}
c10::SymInt sym_storage_offset_default() const {
if (has_symbolic_sizes_strides_) {
return extra_meta_->storage_offset_;
} else {
return c10::SymInt(SymInt::UNCHECKED, storage_offset_);
}
}
/**
* Return a reference to the strides of this tensor. This reference remains
* valid as long as the tensor is live and not restrided.
*/
IntArrayRef strides() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomStrides))) {
return strides_custom();
}
return sizes_and_strides_.strides_arrayref();
}
c10::SymIntArrayRef sym_strides() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomStrides))) {
return sym_strides_custom();
}
return c10::fromIntArrayRefKnownNonNegative(strides_default());
}
IntArrayRef strides_default() const {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"Cannot call strides() on tensor with symbolic sizes/strides");
return sizes_and_strides_.strides_arrayref();
}
c10::SymIntArrayRef sym_strides_default() const {
if (has_symbolic_sizes_strides_) {
return extra_meta_->strides_;
} else {
return c10::fromIntArrayRefKnownNonNegative(strides_default());
}
}
/**
* Whether or not a tensor is laid out in contiguous memory.
*
* Tensors with non-trivial strides are not contiguous. See
* compute_contiguous() for the exact definition of whether or not
* a tensor is contiguous or not.
*/
bool is_contiguous(
at::MemoryFormat memory_format = at::MemoryFormat::Contiguous) const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomStrides))) {
return is_contiguous_custom(memory_format);
}
return is_contiguous_default(memory_format);
}
// These are factored into separate functions in case subclasses
// want to use them
bool is_contiguous_default(at::MemoryFormat memory_format) const {
if (has_symbolic_sizes_strides_) {
if (memory_format == at::MemoryFormat::ChannelsLast) {
return bool(extra_meta_->is_channels_last_contiguous_);
} else if (memory_format == at::MemoryFormat::ChannelsLast3d) {
return bool(extra_meta_->is_channels_last_3d_contiguous_);
}
return bool(extra_meta_->is_contiguous_);
}
if (memory_format == at::MemoryFormat::ChannelsLast) {
return is_channels_last_contiguous_;
} else if (memory_format == at::MemoryFormat::ChannelsLast3d) {
return is_channels_last_3d_contiguous_;
}
return is_contiguous_;
}
bool is_strides_like_default(at::MemoryFormat memory_format) const {
if (has_symbolic_sizes_strides_) {
if (memory_format == at::MemoryFormat::ChannelsLast) {
return bool(extra_meta_->is_channels_last_);
} else if (memory_format == at::MemoryFormat::ChannelsLast3d) {
return bool(extra_meta_->is_channels_last_3d_);
} else {
return false;
}
}
if (memory_format == at::MemoryFormat::ChannelsLast) {
return is_channels_last_;
} else if (memory_format == at::MemoryFormat::ChannelsLast3d) {
return is_channels_last_3d_;
} else {
return false;
}
}
bool is_non_overlapping_and_dense_default() const {
if (has_symbolic_sizes_strides_) {
return bool(extra_meta_->is_non_overlapping_and_dense_);
} else {
return is_non_overlapping_and_dense_;
}
}
// NB: these dim accessor functions don't have _default(), as you can use
// sizes_default/strides_default
/**
* Return the size of a tensor at some dimension, wrapping the dimension if
* necessary.
*
* NOTE: if you know wrapping is unnecessary, do sizes()[d] instead; it will
* be faster
*/
int64_t size(int64_t d) const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return size_custom(d);
}
d = maybe_wrap_dim(d, dim(), /*wrap_scalar=*/false);
return sizes_and_strides_.size_at_unchecked(d);
}
c10::SymInt sym_size(int64_t d) const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomSizes))) {
return sym_size_custom(d);
}
d = maybe_wrap_dim(d, dim(), /*wrap_scalar=*/false);
const auto sizes = this->sym_sizes();
return sizes[d];
}
/**
* Return the stride of a tensor at some dimension, wrapping the dimension
* if necessary.
*
* NOTE: if you know wrapping is unnecessary, do sizes()[d] instead; it will
* be faster
*/
int64_t stride(int64_t d) const {
d = maybe_wrap_dim(d, dim(), false);
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomStrides))) {
// TODO: provide stride_custom, symmetrically with size_custom.
// There is presently no user for it; only NestedTensor is using
// size_custom overrideability
return strides_custom()[d]; // unchecked (maybe_wrap_dim enforces bounds)
}
// Intentionally don't call default, which also handles symbolic
return sizes_and_strides_.stride_at_unchecked(d);
}
enum class SizesStridesPolicy : uint8_t {
// Default behavior, e.g., dense tensor.
//
// Can override: nothing
Default = 0,
// Customizable strides behavior, e.g., sparse tensor,
// mkldnn tensor.
//
// Can override: strides(), is_contiguous()
CustomStrides = 1,
// Customizable sizes behavior, e.g., nested tensor
//
// Can override: strides(), is_contiguous(), sizes(), dim(), numel()
CustomSizes = 2
};
protected:
inline bool matches_policy(SizesStridesPolicy policy) const {
return sizes_strides_policy_ >= static_cast<uint8_t>(policy);
}
inline bool matches_custom(SizesStridesPolicy policy) const {
return custom_sizes_strides_ >= static_cast<uint8_t>(policy);
}
inline bool matches_python_custom(SizesStridesPolicy policy) const {
auto r = python_custom_sizes_strides_ >= static_cast<uint8_t>(policy);
if (r) {
TORCH_INTERNAL_ASSERT(is_python_dispatch())
}
return r;
}
/**
* Customization points for the functions above. sizes_strides_policy_
* must be set to enable these.
*
* NB: dim is overrideable separately from sizes because it is possible
* for a tensor to have rank, but not well defined sizes.
*/
// sizes_strides_policy_ >= CustomStrides
virtual bool is_contiguous_custom(at::MemoryFormat memory_format) const;
virtual bool is_strides_like_custom(at::MemoryFormat memory_format) const;
virtual bool is_non_overlapping_and_dense_custom() const;
// sizes_strides_policy_ >= CustomSizes
// Currently this method only exists to be overwritten by subclasses such as
// NestedTensorImpl.
virtual int64_t size_custom(int64_t d) const {
// TODO: We could add support to Python dispatch here.
// TODO: We could call into aten::size.int instead of
// sizes_custom()[d] and enable use of the dispatcher.
d = maybe_wrap_dim(d, dim(), /*wrap_scalar=*/false);
return sizes_custom()[d]; // unchecked (maybe_wrap_dim enforces bounds)
}
virtual c10::SymInt sym_size_custom(int64_t d) const {
// TODO: We could add support to Python dispatch here.
// TODO: We could call into aten::size.int instead of
// sym_sizes_custom()[d] and enable use of the dispatcher.
d = maybe_wrap_dim(d, dim(), /*wrap_scalar=*/false);
return sym_sizes_custom()[d]; // unchecked (maybe_wrap_dim enforces bounds)
}
virtual IntArrayRef sizes_custom() const;
virtual IntArrayRef strides_custom() const;
virtual int64_t numel_custom() const;
virtual int64_t storage_offset_custom() const;
virtual int64_t dim_custom() const;
virtual Device device_custom() const;
virtual Layout layout_custom() const;
virtual c10::SymIntArrayRef sym_sizes_custom() const;
virtual c10::SymIntArrayRef sym_strides_custom() const;
virtual c10::SymInt sym_numel_custom() const;
virtual c10::SymInt sym_storage_offset_custom() const;
public:
/**
* True if this tensor has storage. See storage() for details.
*/
#ifdef DEBUG
// Allow subclasses to check that their storage_ is never getting set in debug
// builds.
virtual
#else
TENSORIMPL_MAYBE_VIRTUAL
#endif
bool
has_storage() const
// NOTE: we devirtualize this because it arguably shouldn't be an
// error just to ask subclasses if they have storage.
// This used to throw for most subclasses, but OpaqueTensorImpl
// wanted it to successfully return false, so we went ahead and made
// it a non-error.
#ifdef C10_DISABLE_TENSORIMPL_EXTENSIBILITY
{
return storage_;
}
#else
;
#endif
/**
* Return the underlying storage of a Tensor. Multiple tensors may share
* a single storage. A Storage is an impoverished, Tensor-like class
* which supports far less operations than Tensor.
*
* Avoid using this method if possible; try to use only Tensor APIs to perform
* operations.
*/
TENSORIMPL_MAYBE_VIRTUAL const Storage& storage() const {
if (C10_UNLIKELY(storage_access_should_throw_)) {
throw_storage_access_error();
}
return storage_;
}
/**
* Return the underlying storage, unsafely assuming this is a basic strided
* tensor. In cases where `storage` access would throw, this returns a
* default-constructed Storage.
*/
inline const Storage& unsafe_storage() const {
return storage_;
}
bool unique_version() const {
return version_counter_.unique();
}
protected:
virtual Layout layout_impl() const {
TORCH_CHECK(
false, "layout_impl is only implemented for TensorImpl subclasses.");
}
public:
// Whether a tensor is sparse COO or not.
bool is_sparse() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
return key_set_.has_all(c10::sparse_ks);
}
// Whether a tensor is sparse CSR or not.
bool is_sparse_csr() const {
return layout() == kSparseCsr;
}
bool is_quantized() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
constexpr auto quantized_ks = DispatchKeySet(DispatchKey::Quantized);
return key_set_.has_all(quantized_ks);
}
bool is_meta() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_meta();
}
return device_opt_.has_value() && device_opt_->type() == kMeta;
}
bool is_cpu() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_cpu();
}
// Note: we cannot rely on dispatch keys to determine the device type
// of a tensor, because "wrapper" tensors (like FunctionalTensorWrapper)
// don't include backend dispatch keys.
return device_opt_.has_value() && device_opt_->type() == kCPU;
}
bool is_cuda() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_cuda();
}
return device_opt_.has_value() && device_opt_->type() == kCUDA;
}
bool is_xpu() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_xpu();
}
return device_opt_.has_value() && device_opt_->type() == kXPU;
}
bool is_ipu() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_ipu();
}
return device_opt_.has_value() && device_opt_->type() == kIPU;
}
bool is_xla() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_xla();
}
return device_opt_.has_value() && device_opt_->type() == kXLA;
}
bool is_hpu() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_hpu();
}
return device_opt_.has_value() && device_opt_->type() == kHPU;
}
bool is_lazy() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_lazy();
}
return device_opt_.has_value() && device_opt_->type() == kLazy;
}
bool is_hip() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_hip();
}
return device_opt_.has_value() && device_opt_->type() == kHIP;
}
bool is_ve() const {
// NB: This method is not virtual and avoid dispatches for performance
// reasons.
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_ve();
}
return device_opt_.has_value() && device_opt_->type() == kVE;
}
bool is_mkldnn() const {
return key_set_.has_all(c10::mkldnn_ks);
}
bool is_vulkan() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_vulkan();
}
return device_opt_.has_value() && device_opt_->type() == kVulkan;
}
bool is_metal() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_metal();
}
return device_opt_.has_value() && device_opt_->type() == kMetal;
}
bool is_mps() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_mps();
}
return device_opt_.has_value() && device_opt_->type() == kMPS;
}
bool is_ort() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().is_ort();
}
return device_opt_.has_value() && device_opt_->type() == kORT;
}
bool is_nested() const {
return key_set_.has(DispatchKey::NestedTensor);
}
// TODO: remove this once we don't automatically enabled Autograd dispatch
// keys
// in TensorImpl constructor.
// DON'T USE THIS API!! It's only created for testing purpose in
// file aten/src/ATen/core/boxing/impl/test_helpers.h
void remove_autograd_key() {
key_set_ = key_set_ - autograd_dispatch_keyset;
}
// Inference tensor doesn't have autograd or ADInplaceOrView key.
// Invariant:
// Inference tensor has version_counter_.enabled() == false
bool is_inference() {
bool no_ADInplaceOrView = !key_set_.has_any(c10::inplace_or_view_ks);
bool no_Autograd = !key_set_.has_any(c10::autograd_dispatch_keyset);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
no_ADInplaceOrView == no_Autograd,
"ADInplaceOrView and Autograd keys must be on/off at the same time.");
return no_ADInplaceOrView && no_Autograd;
}
int64_t get_device() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom().index();
}
return device_default().index();
}
Device device() const {
if (C10_UNLIKELY(device_policy_)) {
return device_custom();
}
return device_default();
}
protected:
c10::Device device_default() const {
TORCH_CHECK(device_opt_.has_value(), "tensor does not have a device");
// See NOTE [c10::optional operator usage in CUDA]
return *device_opt_;
}
public:
Layout layout() const {
if (C10_UNLIKELY(layout_policy_)) {
return layout_custom();
}
// NB: This method is not virtual and avoid dispatches for perf.
// strided is also the most common layout type, so we check for
// strided case first.
// This keyset must also be kept in sync with the logic in
// is_sparse() / is_sparse_csr() / is_mkldnn()
constexpr auto sparse_and_sparsecsr_and_mkldnn_ks =
c10::sparse_ks | c10::sparse_csr_ks | c10::mkldnn_ks;
if (!key_set_.has_any(sparse_and_sparsecsr_and_mkldnn_ks)) {
return kStrided;
} else if (is_sparse()) {
return kSparse;
} else if (key_set_.has_any(c10::sparse_csr_ks)) {
// Typically, the tensor dispatch keys define the tensor layout
// uniquely. This allows using non-virtual layout method for
// better performance. However, when tensor's layout depends,
// say, on tensor attributes, one must use this execution path
// where the corresponding tensor impl class overwrites virtual
// layout_impl() method.
//
// TODO: implement layout() as native function/method so that
// __torch_dispatch__ users will be able to redefine the
// layout() method.
return layout_impl();
} else {
TORCH_INTERNAL_ASSERT(
is_mkldnn(), "There is an error in the layout calculation logic.");
return kMkldnn;
}
}
/**
* True if a tensor was auto-wrapped from a C++ or Python number.
* For example, when you write 't + 2', 2 is auto-wrapped into a Tensor
* with `is_wrapped_number_` set to true.
*
* Wrapped numbers do not participate in the result type computation for
* mixed-type operations if there are any Tensors that are not wrapped
* numbers. This is useful, because we want 't + 2' to work with
* any type of tensor, not just LongTensor (which is what integers
* in Python represent).
*
* Otherwise, they behave like their non-wrapped equivalents.
* See [Result type computation] in TensorIterator.h.
*
* Why did we opt for wrapped numbers, as opposed to just having
* an extra function add(Tensor, Scalar)? This helps greatly reduce
* the amount of code we have to write for add, when actually
* a Tensor-Scalar addition is really just a Tensor-Tensor
* addition when the RHS is 0-dim (except for promotion behavior.)
*/
bool is_wrapped_number() const {
return is_wrapped_number_;
}
/**
* Set whether or not a tensor was auto-wrapped from a C++ or Python
* number. You probably don't want to call this, unless you are
* writing binding code.
*/
void set_wrapped_number(bool value) {
TORCH_INTERNAL_ASSERT(dim() == 0);
is_wrapped_number_ = value;
}
/**
* Returns true if Tensor supports as_strided and as_strided_backward.
* This is used in autograd to perform inplace update on view Tensors.
* See Note [View + Inplace update for base tensor] and
* [View + Inplace update for view tensor] for details.
* Note this method only returns true for XLA backend, where it
* simulates strided Tensor to support most view ops, but it cannot
* fully support general `as_strided` case.
* It can be expanded as needed in the future, e.g sparse Tensor.
*/
inline bool support_as_strided() const {
return is_nested() ? false : device().supports_as_strided();
}
// ~~~~~ Autograd API ~~~~~
// Some methods below are defined in TensorImpl.cpp because Tensor is an
// incomplete type.
/**
* Set whether or not a tensor requires gradient.
*/
void set_requires_grad(bool requires_grad);
/**
* True if a tensor requires gradient. Tensors which require gradient
* have history tracked for any operations performed on them, so that
* we can automatically differentiate back to them. A tensor that
* requires gradient and has no history is a "leaf" tensor, which we
* accumulate gradients into.
*/
bool requires_grad() const;
/**
* Return a mutable reference to the gradient. This is conventionally
* used as `t.grad() = x` to set a gradient to a completely new tensor.
*/
at::Tensor& mutable_grad();
/**
* Return the accumulated gradient of a tensor. This gradient is written
* into when performing backwards, when this tensor is a leaf tensor.
*/
const at::Tensor& grad() const;
/**
* Whether or not the imaginary part of the tensor should be negated
*/
inline bool is_conj() const {
constexpr auto conjugate_ks = DispatchKeySet(DispatchKey::Conjugate);
return key_set_.has_all(conjugate_ks);
}
/**
* Set whether or not to take the conjugate of the tensor (flip the imaginary
* bit).
*/
void _set_conj(bool value) {
if (value) {
key_set_ = key_set_.add(DispatchKey::Conjugate);
TORCH_INTERNAL_ASSERT(isComplexType(typeMetaToScalarType(dtype())));
} else {
key_set_ = key_set_.remove(DispatchKey::Conjugate);
}
}
/**
* XXX: do not use, private api!
* Update the backend component related keys to the backend component
* corresponding to this device.
*/
void _change_backend_component_keys(c10::Device device);
/**
* Whether or not the tensor is a zerotensor
*/
inline bool _is_zerotensor() const {
constexpr auto zerotensor_ks = DispatchKeySet(DispatchKey::ZeroTensor);
return key_set_.has_all(zerotensor_ks);
}
/**
Set whether or not the tensor is a zero tensor
*/
void _set_zero(bool value) {
if (value) {
TORCH_INTERNAL_ASSERT(
false,
"Please call `torch._efficientzerotensor` if you want to create a tensor with no storage.");
} else {
key_set_ = key_set_.remove(DispatchKey::ZeroTensor);
}
}
/**
* Whether or not the tensor should be negated
*/
inline bool is_neg() const {
constexpr auto negative_ks = DispatchKeySet(DispatchKey::Negative);
return key_set_.has_all(negative_ks);
}
/**
* Set whether or not to take the conjugate of the tensor (flip the imaginary
* bit).
*/
void _set_neg(bool value) {
if (value) {
key_set_ = key_set_.add(DispatchKey::Negative);
} else {
key_set_ = key_set_.remove(DispatchKey::Negative);
}
}
/**
* Return the accumulated gradient of a tensor. This gradient is computed
* using forward mode AD.
*
* This is an internal API that should never be used by end users.
*
* The API is as follows:
* - "level" allows to specify the level of forward AD nesting for which the
* gradient should be returned. Note that since levels are not fully
* supported yet, this argument should be 0. See documentation for
* torch::autograd::enter_dual_level for more details about forward AD
* nesting.
* - "self" should represent the Tensor whose forward grad is accessed. It
* is required when dealing with view.
*/
const at::Tensor& _fw_grad(uint64_t level, const at::TensorBase& self) const;
/**
* Sets the forward gradient for this Tensor.
* The given Tensor might not be used directly and its content will be copied.
*
* This is an internal API that should never be used by end users.
*
* The API is as follows:
* - "new_grad" is a Tensor containing the new value of the gradient that
* should be set
* - "self" should represent the Tensor whose forward grad is accessed. It
* is required when dealing with view.
* - "level" allows to specify the level of forward AD nesting for which the
* gradient should be set. Note that since levels are not fully supported
* yet, this argument should be 0. See documentation for
* torch::autograd::enter_dual_level for more details about forward AD
* nesting.
* - "is_inplace_op" is a boolean flag that tells if this gradient was
* generated by an inplace operation or an out of place one. This allows
* better error checking.
*/
void _set_fw_grad(
const at::TensorBase& new_grad,
const at::TensorBase& self,
uint64_t level,
bool is_inplace_op);
/**
* Return a typed data pointer to the actual data which this tensor refers to.
* This checks that the requested type (from the template parameter) matches
* the internal type of the tensor.
*
* It is invalid to call data() on a dtype-uninitialized tensor, even if
* the size is 0.
*
* WARNING: If a tensor is not contiguous, you MUST use strides when
* performing index calculations to determine the location of elements in
* the tensor. We recommend using 'TensorAccessor' to handle this computation
* for you; this class is available from 'Tensor'.
*/
template <typename T>
inline T* data() const {
TORCH_CHECK(
data_type_.Match<T>(),
"Tensor type mismatch, caller expects elements to be ",
caffe2::TypeMeta::TypeName<T>(),
", while tensor contains ",
data_type_.name(),
". ");
return data_ptr_impl<T>();
}
/**
* More efficient helper for Tensor::data_ptr(). Like data<T>(), but
* does not do a type check. Unlike the untemplated data(), does
* check has_storage() and storage_initialized().
*/
template <typename T>
inline T* data_ptr_impl() const {
TORCH_CHECK(
has_storage(),
"Cannot access data pointer of Tensor that doesn't have storage");
TORCH_CHECK(
storage_initialized(),
"The tensor has a non-zero number of elements, but its data is not allocated yet. "
"Caffe2 uses a lazy allocation, so you will need to call "
"mutable_data() or raw_mutable_data() to actually allocate memory.");
// Caller does the type check.
return storage_.unsafe_data<T>() + storage_offset_;
}
/**
* Return a void* data pointer to the actual data which this tensor refers to.
*
* It is invalid to call data() on a dtype-uninitialized tensor, even if the
* size is 0.
*
* WARNING: The data pointed to by this tensor may not contiguous; do NOT
* assume that itemsize() * numel() is sufficient to compute the bytes that
* can be validly read from this tensor.
*/
inline void* data() const {
TORCH_CHECK(
has_storage(),
"Cannot access data pointer of Tensor that doesn't have storage");
TORCH_CHECK(
dtype_initialized(),
"Cannot access data pointer of Tensor that doesn't have initialized dtype "
"(e.g., caffe2::Tensor x(CPU), prior to calling mutable_data<T>() on x)");
// Computing an offset into an empty tensor would be UB, since an empty
// tensor's storage will be nullptr, and adding a nonzero offset to nullptr
// is UB. So we skip the offset computation in this case.
if (is_empty()) {
return nullptr;
}
return static_cast<void*>(
static_cast<char*>(storage_.data()) +
data_type_.itemsize() * storage_offset_);
}
/**
* Like data<T>(), but performs no checks. You are responsible for ensuring
* that all invariants required by data() are upheld here.
*/
template <typename T>
inline T* unsafe_data() const {
return storage_.unsafe_data<T>() + storage_offset_;
}
/**
* Returns the TypeMeta of a tensor, which describes what data type
* it is (e.g., int, float, ...)
*/
const caffe2::TypeMeta dtype() const {
return data_type_;
}
/**
* Return the size of a single element of this tensor in bytes.
*/
size_t itemsize() const {
TORCH_CHECK(
dtype_initialized(),
"Cannot report itemsize of Tensor that doesn't have initialized dtype "
"(e.g., caffe2::Tensor x(CPU), prior to calling mutable_data<T>() on x)");
return data_type_.itemsize();
}
protected:
/**
* Returns the human-readable name of the actual type of this object (e.g.,
* TensorImpl, BatchedTensorImpl, etc.). Used for error messages.
*/
virtual const char* tensorimpl_type_name() const {
return "TensorImpl";
}
private:
[[noreturn]] void throw_storage_access_error() const;
public:
/**
* True if a tensor has no elements (e.g., numel() == 0).
*/
inline bool is_empty() const {
return numel() == 0;
}
// if we are going to use sym sizes, we should be setting sym strides at the
// same time, otherwise it's very easy to misuse this API
void set_sizes_and_strides(
c10::SymIntArrayRef sizes,
c10::SymIntArrayRef strides,
c10::optional<c10::SymInt> storage_offset = c10::nullopt);
/**
* Change the size at some dimension. This DOES NOT update strides;
* thus, most changes to size will not preserve contiguity. You probably
* also want to call set_stride() when you call this.
*
* TODO: This should be jettisoned in favor of `set_sizes_and_strides`,
* which is harder to misuse.
*/
virtual void set_size(int64_t dim, int64_t new_size) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_size ",
err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(
!matches_policy(SizesStridesPolicy::CustomSizes),
"set_size() called on tensor with dynamic shapes or customized size behavior")
sizes_and_strides_.size_at(dim) = new_size;
refresh_numel();
refresh_contiguous();
}
/**
* Change the stride at some dimension.
*
* TODO: This should be jettisoned in favor of `set_sizes_and_strides`,
* which is harder to misuse.
*/
virtual void set_stride(int64_t dim, int64_t new_stride) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_stride ",
err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"set_stride() called on tensor with symbolic shape")
sizes_and_strides_.stride_at_unchecked(dim) = new_stride;
refresh_contiguous();
}
/**
* Set the offset into the storage of this tensor.
*
* WARNING: This does NOT check if the tensor is in bounds for the new
* location at the storage; the caller is responsible for checking this
* (and resizing if necessary.)
*/
virtual void set_storage_offset(int64_t storage_offset) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_storage_offset ",
err_msg_tensor_metadata_change_not_allowed);
// TODO: this should probably consult policy
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"set_storage_offset() called on tensor with symbolic shape")
storage_offset_ = storage_offset;
}
/**
* Like set_sizes_and_strides but assumes contiguous strides.
*
* WARNING: This function does not check if the requested
* sizes/strides are in bounds for the storage that is allocated;
* this is the responsibility of the caller
*/
void set_sizes_contiguous(IntArrayRef new_size) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_sizes_contiguous ",
err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(
!matches_policy(SizesStridesPolicy::CustomStrides),
"tried to directly modify sizes for customized tensor");
sizes_and_strides_.set_sizes(new_size);
refresh_numel();
empty_tensor_restride(
MemoryFormat::Contiguous); // calls refresh_contiguous()
}
/**
* Set the sizes and strides of a tensor.
*
* WARNING: This function does not check if the requested
* sizes/strides are in bounds for the storage that is allocated;
* this is the responsibility of the caller
*/
void set_sizes_and_strides(
IntArrayRef new_size,
IntArrayRef new_stride,
c10::optional<int64_t> storage_offset = c10::nullopt) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_sizes_and_strides ",
err_msg_tensor_metadata_change_not_allowed);
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"set_sizes_and_strides() called on tensor with symbolic shape")
TORCH_CHECK(
new_size.size() == new_stride.size(),
"dimensionality of sizes (",
new_size.size(),
") must match dimensionality of strides (",
new_stride.size(),
")");
const auto new_dim = new_size.size();
sizes_and_strides_.set_sizes(new_size);
if (new_dim > 0) {
for (size_t dim = new_dim - 1;; dim--) {
if (new_stride[dim] >= 0) {
sizes_and_strides_.stride_at_unchecked(dim) = new_stride[dim];
} else {
// XXX: This behavior is surprising and may need to be removed to
// support negative strides. Some pytorch functions rely on it:
// for example, torch.cat (run TestTorch.test_cat_empty).
if (dim == new_dim - 1) {
sizes_and_strides_.stride_at_unchecked(dim) = 1;
} else {
// Keep stride monotonically increasing to match NumPy.
sizes_and_strides_.stride_at_unchecked(dim) =
std::max<int64_t>(
sizes_and_strides_.size_at_unchecked(dim + 1), 1) *
sizes_and_strides_.stride_at_unchecked(dim + 1);
}
}
if (dim == 0)
break;
}
}
refresh_numel();
refresh_contiguous();
if (storage_offset.has_value()) {
storage_offset_ = *storage_offset;
}
}
/**
* Set whether a tensor allows changes to its metadata (e.g. sizes / strides /
* storage / storage_offset). See NOTE [ Metadata Change for a Detached Tensor
* ] for details.
*/
void set_allow_tensor_metadata_change(bool value) {
// TODO: at some point, we should kill this field completely.
allow_tensor_metadata_change_ = true;
}
/**
* True if a tensor allows changes to its metadata (e.g. sizes / strides /
* storage / storage_offset). See NOTE [ Metadata Change for a Detached Tensor
* ] for details.
*/
bool allow_tensor_metadata_change() const {
return allow_tensor_metadata_change_;
}
/**
* Set the pointer to autograd metadata.
*/
void set_autograd_meta(
std::unique_ptr<c10::AutogradMetaInterface> autograd_meta);
/**
* Return the pointer to autograd metadata. May return nullptr if the
* tensor does not track gradients.
*/
c10::AutogradMetaInterface* autograd_meta() const;
/**
* Set the pointer to named tensor metadata.
*/
void set_named_tensor_meta(
std::unique_ptr<c10::NamedTensorMetaInterface> named_tensor_meta) {
TORCH_WARN_ONCE(
"Named tensors and all their associated APIs are an experimental feature ",
"and subject to change. Please do not use them for anything important ",
"until they are released as stable.");
#ifdef DEBUG
if (named_tensor_meta) {
TORCH_INTERNAL_ASSERT(named_tensor_meta->slow_dim() == dim());
}
#endif
if (named_tensor_meta) {
if (!extra_meta_) {
extra_meta_ = std::make_unique<ExtraMeta>();
}
extra_meta_->named_tensor_meta_ = std::move(named_tensor_meta);
key_set_ = key_set_.add(DispatchKey::Named);
} else {
if (extra_meta_) {
extra_meta_->named_tensor_meta_ = nullptr;
}
key_set_ = key_set_.remove(DispatchKey::Named);
}
}
void set_python_dispatch(bool k) {
if (k) {
key_set_ = key_set_.add(c10::python_ks);
} else {
key_set_ = key_set_ - c10::python_ks;
}
}
bool is_python_dispatch() const {
return key_set_.has_all(c10::python_ks);
}
/**
* Return the pointer to named tensor metadata.
*/
const c10::NamedTensorMetaInterface* named_tensor_meta() const {
if (!extra_meta_) {
return nullptr;
}
return extra_meta_->named_tensor_meta_.get();
}
c10::NamedTensorMetaInterface* named_tensor_meta() {
if (!extra_meta_) {
return nullptr;
}
return extra_meta_->named_tensor_meta_.get();
}
bool has_named_tensor_meta() const {
if (!extra_meta_) {
return false;
}
return extra_meta_->named_tensor_meta_ != nullptr;
}
// NOTE [ TensorImpl Shallow-Copying ]
//
// TensorImpl shallow-copying is used when we want to have two Variables share
// the same tensor metadata (e.g. sizes / strides / storage pointer /
// storage_offset), but each with a different autograd history. Example call
// sites:
//
// 1. `var_detached = var.detach()` uses `shallow_copy_and_detach()` to create
// `var_detached` that shares the same tensor metadata with `var`, but with a
// completely new autograd history.
// 2. `var.set_data(tensor)` uses `shallow_copy_from()` to copy tensor
// metadata from `tensor` into `var`, while keeping `var`'s original
// AutogradMeta.
//
// Functions that shallow-copy a TensorImpl (such as
// `shallow_copy_and_detach()` / `shallow_copy_from()` /
// `copy_tensor_metadata()`) copy the tensor metadata fields (e.g. sizes /
// strides / storage pointer / storage_offset) by value. However, the
// following fields are not copied:
//
// 1. the AutogradMeta pointer, because it is unique for each Variable.
// 2. the version counter, because the destination TensorImpl's version
// counter is either set to the passed-in `version_counter` (in
// `shallow_copy_and_detach()` and `copy_tensor_metadata()`), or it is kept
// intact (in `shallow_copy_from()`). See NOTE [ Version Counter Sharing ] for
// details.
//
// In `shallow_copy_and_detach()` and `copy_tensor_metadata()`, the passed-in
// `allow_tensor_metadata_change` determines whether the TensorImpl
// shallow-copy allows changes to its metadata (e.g. sizes / strides / storage
// / storage_offset). See NOTE [ Metadata Change for a Detached Tensor ] for
// details.
//
// In `shallow_copy_from()`, we don't check the destination TensorImpl's
// `allow_tensor_metadata_change_`, because `shallow_copy_from()` is used for
// implementing functions such as `var.set_data(tensor)`, which changes
// `var`'s tensor metadata and expects its `allow_tensor_metadata_change_` to
// be ignored.
/**
* One TensorImpl can be copied to another TensorImpl if they have the same
* DispatchKeySet. The only two special cases (for legacy reason) are:
* CPU is compatible with CUDA and SparseCPU is
* compatible with SparseCUDA.
*/
inline bool has_compatible_shallow_copy_type(DispatchKeySet from) {
auto is_dense = [](DispatchKeySet ts) {
constexpr auto dense_backends = DispatchKeySet(
{BackendComponent::CPUBit,
BackendComponent::CUDABit,
BackendComponent::MPSBit,
BackendComponent::HIPBit,
BackendComponent::XPUBit});
constexpr auto dense_k = DispatchKeySet(DispatchKey::Dense);
return ts.has_any(dense_k) && ts.has_any(dense_backends);
};
auto is_sparse = [](DispatchKeySet ts) {
constexpr auto sparse_backends = DispatchKeySet(
{BackendComponent::CPUBit,
BackendComponent::CUDABit,
BackendComponent::HIPBit,
BackendComponent::XPUBit});
constexpr auto sparse_k = DispatchKeySet(DispatchKey::Sparse);
return ts.has_any(sparse_k) && ts.has_any(sparse_backends);
};
return (key_set_ == from) || (is_dense(key_set_) && is_dense(from)) ||
(is_sparse(key_set_) && is_sparse(from));
}
private:
template <typename VariableVersion>
c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach_core(
VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const;
public:
/**
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`,
* see NOTE [ TensorImpl Shallow-Copying ].
*/
virtual c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change) const;
/**
* Return a TensorImpl that is a shallow-copy of this TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`,
* see NOTE [ TensorImpl Shallow-Copying ].
*/
virtual c10::intrusive_ptr<TensorImpl> shallow_copy_and_detach(
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change) const;
/**
* Shallow-copies data from another TensorImpl into this TensorImpl.
*
* For why this function doesn't check this TensorImpl's
* `allow_tensor_metadata_change_`, see NOTE [ TensorImpl Shallow-Copying ].
*/
virtual void shallow_copy_from(const c10::intrusive_ptr<TensorImpl>& impl) {
copy_tensor_metadata(
/*src_impl=*/impl.get(),
/*dest_impl=*/this,
/*version_counter=*/version_counter(),
/*allow_tensor_metadata_change=*/allow_tensor_metadata_change());
refresh_numel();
refresh_contiguous();
}
// Inference tensor doesn't have version counter,
// set_version_counter is no-op for them.
void set_version_counter(const c10::VariableVersion& version_counter) {
TORCH_CHECK(
!(is_inference() && version_counter.enabled()),
"Cannot set version_counter for inference tensor");
version_counter_ = version_counter;
}
void set_version_counter(c10::VariableVersion&& version_counter) {
TORCH_CHECK(
!(is_inference() && version_counter.enabled()),
"Cannot set version_counter for inference tensor");
version_counter_ = std::move(version_counter);
}
const c10::VariableVersion& version_counter() const noexcept {
return version_counter_;
}
void bump_version() {
version_counter_.bump();
}
// Associate the TensorImpl with the specified PyObject, and, if necessary,
// also tag the interpreter.
//
// NB: This lives in a header so that we can inline away the switch on status
//
// NB: THIS FUNCTION CAN RAISE AN EXCEPTION. Make sure to clean up after
// PyObject if necessary!
void init_pyobj(
impl::PyInterpreter* self_interpreter,
PyObject* pyobj,
c10::impl::PyInterpreterStatus status) {
impl::PyInterpreter* expected = nullptr;
switch (status) {
case impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED:
// caller guarantees there is no multithreaded access; if there is
// no data race OK to do a relaxed store
pyobj_interpreter_.store(self_interpreter, std::memory_order_relaxed);
break;
case impl::PyInterpreterStatus::TAGGED_BY_US:
// no tagging is necessary, the tag is already correct
break;
case impl::PyInterpreterStatus::MAYBE_UNINITIALIZED:
// attempt to claim this TensorImpl with the specified interpreter
// tag
if (pyobj_interpreter_.compare_exchange_strong(
expected, self_interpreter, std::memory_order_acq_rel)) {
break;
}
// test if, actually, it was already tagged by us! this situation can't
// be caused by a race, but it could be caused by a situation
// where someone conservatively tagged the tensor as MAYBE_UNINITIALIZED
// (because they didn't pre-check the tag) when actually it was
// owned by the interpreter
if (expected == self_interpreter) {
break;
}
// fallthrough, we lost the race. We are guaranteed not to lose the
// race with ourself, as calls to init_pyobj with the same interpreter
// ID must be sequentialized by the GIL
C10_FALLTHROUGH;
case impl::PyInterpreterStatus::TAGGED_BY_OTHER:
TORCH_CHECK(
false,
"cannot allocate PyObject for Tensor on interpreter ",
self_interpreter,
" that has already been used by another torch deploy interpreter ",
pyobj_interpreter_.load());
}
// we are the ONLY thread that can have gotten to this point. It is not
// possible to conflict with another zero interpreter as access is protected
// by GIL
// NB: owns_pyobj tag is initially false
pyobj_ = pyobj;
}
// Query the PyObject interpreter. This may return null if there is no
// interpreter. This is racy!
impl::PyInterpreter* pyobj_interpreter() {
return pyobj_interpreter_.load(std::memory_order_acquire);
}
PyObject* _unchecked_untagged_pyobj() const {
return reinterpret_cast<PyObject*>(
reinterpret_cast<uintptr_t>(pyobj_) & ~0x1ULL);
}
// Test the interpreter tag. If tagged for the current interpreter, return
// a non-nullopt (but possibly null) PyObject. If (possibly) untagged,
// returns a nullopt. If it is definitely invalid, raises an error.
//
// NB: this lives in header so that we can avoid actually creating the
// c10::optional
c10::optional<PyObject*> check_pyobj(
impl::PyInterpreter* self_interpreter) const {
// Note [Memory ordering on Python interpreter tag]
impl::PyInterpreter* interpreter =
pyobj_interpreter_.load(std::memory_order_acquire);
if (interpreter == nullptr) {
// NB: This never returns DEFINITELY_UNINITIALIZED because there is
// always the possibility that another thread races to initialize
// after we query here. The only time when we can conclude a tensor
// is definitely uninitialized is when we have just allocated it and
// it cannot have escaped to other threads yet
return c10::nullopt;
} else if (interpreter == self_interpreter) {
// NB: pyobj_ could still be null!
return c10::make_optional(_unchecked_untagged_pyobj());
} else {
TORCH_CHECK(
false,
"cannot access PyObject for Tensor on interpreter ",
(*self_interpreter)->name(),
" that has already been used by another torch deploy interpreter ",
(*pyobj_interpreter_.load())->name());
}
}
// Clear the PyObject field for an interpreter, in situations where we
// statically know the tensor is tagged with our interpreter.
void unchecked_clear_pyobj(impl::PyInterpreter* interpreter) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(interpreter == pyobj_interpreter_.load());
pyobj_ = nullptr;
}
private:
// See NOTE [c10::optional operator usage in CUDA]
// We probably don't want to expose this publicly until
// the note is addressed.
c10::optional<c10::Device> device_opt() const {
return device_opt_;
}
impl::PyInterpreter& load_pyobj_interpreter() const;
public:
/**
* The device type of a Tensor, e.g., DeviceType::CPU or DeviceType::CUDA.
*/
DeviceType device_type() const {
// TODO: A useful internal assert would be to show that device_opt_ is null
// only if you are an undefined tensor
TORCH_CHECK(
device_opt_.has_value(),
"device_type cannot be run on undefined Tensor");
// See NOTE [c10::optional operator usage in CUDA]
return (*device_opt_).type();
}
/**
* @brief Extends the outer-most dimension of this tensor by num elements,
* preserving the existing data.
*
* The underlying data may be reallocated in order to accommodate the new
* elements, in which case this tensors' capacity is grown at a factor of
* growthPct. This ensures that Extend runs on an amortized O(1) time
* complexity.
*
* This op is auto-asynchronous if the underlying device (CUDA) supports it.
*/
void Extend(int64_t num, float growthPct);
/**
* @brief Reserve space for the underlying tensor.
*
* This must be called after Resize(), since we only specify the first
* dimension This does not copy over the old data to the newly allocated space
*/
void ReserveSpace(int64_t outer_dim);
/**
* @brief Resizes a tensor.
*
* Resize takes in a vector of ints specifying the dimensions of the tensor.
* You can pass in an empty vector to specify that it is a scalar (i.e.
* containing one single item).
*
* The underlying storage may be deleted after calling Resize: if the new
* shape leads to a different number of items in the tensor, the old memory
* is deleted and new memory will be allocated next time you call
* mutable_data(). However, if the shape is different but the total number of
* items is the same, the underlying storage is kept.
*
* This method respects caffe2_keep_on_shrink. Consult the internal logic
* of this method to see exactly under what circumstances this flag matters.
*/
template <typename... Ts>
void Resize(Ts... dim_source) {
bool size_changed = SetDims(dim_source...);
if (size_changed) {
HandleResize();
}
}
template <typename T>
void Resize(const std::vector<T>& dim_source) {
Resize(ArrayRef<T>(dim_source));
}
/**
* Resizes the tensor without touching underlying storage.
* This requires the total size of the tensor to remains constant.
*/
void Reshape(const std::vector<int64_t>& dims);
/**
* Release whatever memory the tensor was holding but keep size and type
* information. Subsequent call to mutable_data will trigger new memory
* allocation.
*/
void FreeMemory();
/**
* @brief Shares the data with another tensor.
*
* To share data between two tensors, the sizes of the two tensors must be
* equal already. The reason we do not implicitly do a Resize to make the two
* tensors have the same shape is that we want to allow tensors of different
* shapes but the same number of items to still be able to share data. This
* allows one to e.g. have a n-dimensional Tensor and a flattened version
* sharing the same underlying storage.
*
* The source tensor should already have its data allocated.
*/
// To be deprecated
void ShareData(const TensorImpl& src);
void ShareExternalPointer(
DataPtr&& data_ptr,
const caffe2::TypeMeta data_type,
size_t size_bytes);
/**
* Returns a mutable raw pointer of the underlying storage. Since we will need
* to know the type of the data for allocation, a TypeMeta object is passed in
* to specify the necessary information. This is conceptually equivalent of
* calling mutable_data<T>() where the TypeMeta parameter meta is derived from
* the type T. This function differs from mutable_data<T>() in the sense that
* the type T can be specified during runtime via the TypeMeta object.
*
* If the existing data does not match the desired type, it will be deleted
* and a new storage will be created.
*/
inline void* raw_mutable_data(const caffe2::TypeMeta meta) {
// For 0-size tensors it's fine to return any pointer (including nullptr)
if (data_type_ == meta && storage_initialized()) {
return static_cast<void*>(
static_cast<char*>(storage_.data()) +
storage_offset_ * meta.itemsize());
} else {
bool had_special_dtor = data_type_.placementDelete() != nullptr;
storage_offset_ = 0;
data_type_ = meta;
// NB: device is not changed
// We can reuse the existing buffer if the current data does not have
// a special destructor and the new data doesn't have a special
// constructor.
if (numel_ == 0 ||
(meta.placementNew() == nullptr && !had_special_dtor &&
(storage_.nbytes() >= (numel_ * data_type_.itemsize())))) {
TORCH_INTERNAL_ASSERT(
storage_offset_ == 0); // because we just reallocated
return storage_.data();
}
const Allocator* allocator = storage_.allocator();
// Storage might have nullptr allocator in rare cases, for example, if
// an external memory segment has been wrapped with Tensor and we don't
// know how to reallocate it. However, in order to preserve legacy C2
// behavior, we allow reallocating the memory using default allocator.
if (allocator == nullptr) {
allocator = GetAllocator(storage_.device_type());
}
if (meta.placementNew()) {
// For types that need placement new, we will call it, as well as
// making sure that when the data is freed, it calls the right
// destruction procedure.
auto size = numel_;
auto dtor = data_type_.placementDelete();
auto data_ptr = allocator->allocate(numel_ * data_type_.itemsize());
storage_.set_data_ptr_noswap(PlacementDeleteContext::makeDataPtr(
std::move(data_ptr), dtor, size, storage_.device()));
data_type_.placementNew()(storage_.data(), numel_);
} else {
// For fundamental type, new and delete is easier.
storage_.set_data_ptr_noswap(
allocator->allocate(numel_ * data_type_.itemsize()));
}
storage_.set_nbytes(numel_ * data_type_.itemsize());
TORCH_INTERNAL_ASSERT(
storage_offset_ == 0); // because we just reallocated
device_opt_ = storage_.device();
return storage_.data();
}
}
/**
* Returns a typed pointer of the underlying storage.
*
* For fundamental types, we reuse possible existing storage if there
* is sufficient capacity.
*/
template <typename T>
inline T* mutable_data() {
if (storage_initialized() && data_type_.Match<T>()) {
return static_cast<T*>(storage_.data()) + storage_offset_;
}
// Check it here statically - otherwise TypeMeta would throw the runtime
// error in attempt to invoke TypeMeta::ctor()
static_assert(
std::is_default_constructible<T>::value,
"Tensor can't hold non-default-constructable types");
return static_cast<T*>(raw_mutable_data(caffe2::TypeMeta::Make<T>()));
}
/**
* True if a tensor is storage initialized. A tensor may become
* storage UNINITIALIZED after a Resize() or FreeMemory()
*/
bool storage_initialized() const {
TORCH_CHECK(
has_storage(),
"cannot call storage_initialized on tensor that does not have storage");
return storage_.data() || numel_ == 0;
}
/**
* True if a tensor is dtype initialized. A tensor allocated with
* Caffe2-style constructors is dtype uninitialized until the
* first time mutable_data<T>() is called.
*/
bool dtype_initialized() const noexcept {
return data_type_ != caffe2::TypeMeta();
}
void set_storage_keep_dtype(at::Storage storage) {
TORCH_CHECK(
allow_tensor_metadata_change(),
"set_storage ",
err_msg_tensor_metadata_change_not_allowed);
storage_ = std::move(storage);
device_opt_ = storage_.device();
}
void set_storage_and_dtype(
at::Storage storage,
const caffe2::TypeMeta data_type) {
set_storage_keep_dtype(storage);
data_type_ = data_type;
}
/**
* Set the strides of the tensor to match memory_format
*
* WARNING: This function doesn't rearrange data and assumes tensor is a
* memory contiguous
*/
void empty_tensor_restride(MemoryFormat memory_format) {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"empty_tensor_restride() called on tensor with symbolic shape")
#ifdef DEBUG
TORCH_INTERNAL_ASSERT(
compute_numel() == numel_,
"If you are seeing this error, that means empty_tensor_restride was "
"called before setting correct numel");
#endif
switch (memory_format) {
case MemoryFormat::Contiguous: {
// dim_ is a virtual call, don't repeat it
const auto dim_ = dim();
sizes_and_strides_.resize(dim_);
if (dim_ > 0) {
const auto last_idx = dim_ - 1;
sizes_and_strides_.stride_at_unchecked(last_idx) = 1;
for (auto i = last_idx - 1; i >= 0; --i) {
sizes_and_strides_.stride_at_unchecked(i) =
sizes_and_strides_.stride_at_unchecked(i + 1) *
std::max<int64_t>(
sizes_and_strides_.size_at_unchecked(i + 1), 1);
}
}
break;
}
case MemoryFormat::ChannelsLast: {
TORCH_CHECK(
dim() == 4, "required rank 4 tensor to use channels_last format");
set_sizes_and_strides(sizes(), get_channels_last_strides_2d(sizes()));
break;
}
case MemoryFormat::ChannelsLast3d: {
TORCH_CHECK(
dim() == 5,
"required rank 5 tensor to use channels_last_3d format");
set_sizes_and_strides(sizes(), get_channels_last_strides_3d(sizes()));
break;
}
case MemoryFormat::Preserve:
TORCH_CHECK(false, "unsupported memory format ", memory_format);
// Cleaning warning messages, no need to break as TORCH_CHECK(false)
// terminates flow.
// break;
case MemoryFormat::NumOptions:
TORCH_INTERNAL_ASSERT(false, "invalid memory format ", memory_format);
}
// recompute contiguous flag, as currently NHWC/NCHW flags are not mutually
// exclusive see #24090
refresh_contiguous();
}
bool is_strides_like(at::MemoryFormat memory_format) const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomStrides))) {
return is_strides_like_custom(memory_format);
}
return is_strides_like_default(memory_format);
}
bool is_strides_like_channels_last() const {
return is_strides_like(at::MemoryFormat::ChannelsLast);
}
bool is_strides_like_channels_last_3d() const {
return is_strides_like(at::MemoryFormat::ChannelsLast3d);
}
bool is_non_overlapping_and_dense() const {
if (C10_UNLIKELY(matches_policy(SizesStridesPolicy::CustomStrides))) {
return is_non_overlapping_and_dense_custom();
}
return is_non_overlapping_and_dense_default();
}
bool has_symbolic_sizes_strides() const {
return has_symbolic_sizes_strides_;
}
private:
void HandleResize();
// The Caffe2 Resize() method supports being called both as Resize({2,2}) as
// well as variadic with Resize(2, 2). These overloads provide all of the
// supported calling configurations, while being overloads (and not templates)
// so that implicit conversions still work.
//
// SetDims on ArrayRef is internally implemented as a template, so we can
// handle both ArrayRefs of different types (there are some uses of
// Resize in Caffe2 which pass in int, not int64_t.)
template <
typename T,
typename = typename std::enable_if<std::is_integral<T>::value>::type>
bool SetDimsTemplate(ArrayRef<T> src) {
TORCH_CHECK(
!has_symbolic_sizes_strides_,
"SetDims() called on tensor with symbolic shape")
auto old_numel = numel_;
sizes_and_strides_.resize(src.size());
int64_t new_numel = 1;
for (const auto i : c10::irange(src.size())) {
new_numel *= src[i];
sizes_and_strides_.size_at_unchecked(i) = src[i];
}
numel_ = new_numel;
empty_tensor_restride(MemoryFormat::Contiguous);
return numel_ != old_numel;
}
bool SetDims(ArrayRef<int64_t> s) {
return SetDimsTemplate(s);
}
bool SetDims(ArrayRef<int> s) {
return SetDimsTemplate(s);
}
bool SetDims(ArrayRef<size_t> s) {
return SetDimsTemplate(s);
}
bool SetDims() {
return SetDims(IntArrayRef{});
}
bool SetDims(const int64_t d0) {
return SetDims(IntArrayRef{d0});
}
bool SetDims(const int64_t d0, const int64_t d1) {
return SetDims(IntArrayRef{d0, d1});
}
bool SetDims(const int64_t d0, const int64_t d1, const int64_t d2) {
return SetDims(IntArrayRef{d0, d1, d2});
}
bool SetDims(
const int64_t d0,
const int64_t d1,
const int64_t d2,
const int64_t d3) {
return SetDims(IntArrayRef{d0, d1, d2, d3});
}
/**
* Compute the number of elements based on the sizes of a tensor.
*/
// NB: This is ONLY called when sizes_and_strides_ is used directly; if
// we are virtualizing, then numel calls are virtualized as well, and this
// should never get called
int64_t compute_numel() const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!has_symbolic_sizes_strides_);
#if C10_HAS_BUILTIN_OVERFLOW() && !defined(C10_MOBILE)
// Use overflow checks if supported by the compiler
return safe_compute_numel();
#else
return c10::multiply_integers(sizes_and_strides_.sizes_arrayref());
#endif
}
/**
* Compute the number of elements based on the sizes of a
* tensor. Catches integer overflow that may occur when a tensor
* using a sparse layout has multiple dimensions with large sizes.
*/
int64_t safe_compute_numel() const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(!has_symbolic_sizes_strides_);
uint64_t n = 1;
bool overflows =
c10::safe_multiplies_u64(sizes_and_strides_.sizes_arrayref(), &n);
constexpr auto numel_max = std::min(
static_cast<uint64_t>(std::numeric_limits<int64_t>::max()),
static_cast<uint64_t>(std::numeric_limits<size_t>::max()));
overflows |= (n > numel_max);
TORCH_CHECK(!overflows, "numel: integer multiplication overflow");
return static_cast<int64_t>(n);
}
SymInt compute_sym_numel() const {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(has_symbolic_sizes_strides_);
SymInt numel = 1;
for (const auto& s : extra_meta_->sizes_) {
numel *= s;
}
return numel;
}
/**
* Compute whether or not a tensor is contiguous based on the sizes and
* strides of a tensor.
*/
bool_is_contiguous compute_contiguous() const;
bool_is_channels_last_contiguous compute_channels_last_contiguous_2d() const;
bool_is_channels_last_3d_contiguous compute_channels_last_contiguous_3d()
const;
bool_is_channels_last compute_strides_like_channels_last_2d() const;
bool_is_channels_last_3d compute_strides_like_channels_last_3d() const;
bool_is_non_overlapping_and_dense compute_non_overlapping_and_dense() const;
protected:
/**
* Recompute the cached numel of a tensor. Call this if you modify
* sizes.
*
* For tensors with sparse layouts, use safe_refresh_numel() instead
* because it will catch integer overflow that may occur for tensors
* with sparse layouts and large dimensions.
*
* NB: We may uselessly recompute cached numel even in situations where
* it is completely never used (e.g., if CustomSizes for Python). However,
* we still must keep it up to date in case the Python overload
* returns None (in which case we will consult the field here). This also
* implies that sizes/strides will never be complete garbage; in the
* very worst case scenario, it will reflect a 1-dim zero size tensor.
*/
void refresh_numel() {
if (has_symbolic_sizes_strides_) {
extra_meta_->numel_ = compute_sym_numel();
} else {
numel_ = compute_numel();
}
}
/**
* Recompute the cached numel of a tensor. Call this if you modify
* sizes. Use only for tensors with sparse layouts because only
* sparse tensor are likely to have sizes that may lead to integer
* overflow when computing numel.
*/
void safe_refresh_numel() {
if (has_symbolic_sizes_strides_) {
// NB: sym numel is done with symbolic integers, which handle overflow
// checking
extra_meta_->numel_ = compute_sym_numel();
} else {
numel_ = safe_compute_numel();
}
}
/**
* Recompute the cached contiguity of a tensor. Call this if you modify sizes
* or strides.
*/
void refresh_contiguous() {
auto set_fields =
[&](bool_is_contiguous is_contiguous,
bool_is_channels_last_contiguous is_channels_last_contiguous,
bool_is_channels_last_3d_contiguous is_channels_last_3d_contiguous,
bool_is_channels_last is_channels_last,
bool_is_channels_last_3d is_channels_last_3d,
bool_is_non_overlapping_and_dense is_non_overlapping_and_dense) {
if (has_symbolic_sizes_strides_) {
extra_meta_->is_contiguous_ = is_contiguous;
extra_meta_->is_channels_last_contiguous_ =
is_channels_last_contiguous;
extra_meta_->is_channels_last_3d_contiguous_ =
is_channels_last_3d_contiguous;
extra_meta_->is_channels_last_ = is_channels_last;
extra_meta_->is_channels_last_3d_ = is_channels_last_3d;
extra_meta_->is_non_overlapping_and_dense_ =
is_non_overlapping_and_dense;
} else {
is_contiguous_ = bool(is_contiguous);
is_channels_last_contiguous_ = bool(is_channels_last_contiguous);
is_channels_last_3d_contiguous_ =
bool(is_channels_last_3d_contiguous);
is_channels_last_ = bool(is_channels_last);
is_channels_last_3d_ = bool(is_channels_last_3d);
is_non_overlapping_and_dense_ = bool(is_non_overlapping_and_dense);
}
};
auto is_contiguous = compute_contiguous();
// Note:
// Dim 0, 1, 2 will never be a channels last 2d/3d format
// Dim 3+ is possibly be a channels last 2d format (Dim 4 only at this
// point) Dim 4+ is possibly be a channels last 3d format (Dim 5 only at
// this point)
switch (dim()) {
case 4: {
auto is_channels_last_contiguous =
compute_channels_last_contiguous_2d();
set_fields(
is_contiguous,
is_channels_last_contiguous,
bool_is_channels_last_3d_contiguous(false),
compute_strides_like_channels_last_2d(),
bool_is_channels_last_3d(false),
bool_is_non_overlapping_and_dense(
is_contiguous || is_channels_last_contiguous ||
compute_non_overlapping_and_dense()));
break;
}
case 5: {
auto is_channels_last_contiguous =
compute_channels_last_contiguous_2d();
auto is_channels_last_3d_contiguous =
bool_is_channels_last_3d_contiguous(
!is_channels_last_contiguous &&
compute_channels_last_contiguous_3d());
auto is_channels_last = bool_is_channels_last(
!is_channels_last_3d_contiguous &&
compute_strides_like_channels_last_2d());
auto is_channels_last_3d = bool_is_channels_last_3d(
!is_channels_last && compute_strides_like_channels_last_3d());
auto is_non_overlapping_and_dense = bool_is_non_overlapping_and_dense(
is_contiguous || is_channels_last_contiguous ||
is_channels_last_3d_contiguous ||
compute_non_overlapping_and_dense());
set_fields(
is_contiguous,
is_channels_last_contiguous,
is_channels_last_3d_contiguous,
is_channels_last,
is_channels_last_3d,
is_non_overlapping_and_dense);
break;
}
default:
// is_channels_last_ and is_channels_last_3d_ are suggested
// memory_format. Being channels_last_contiguous doesn't necessarily
// mean the tensor is strided like channels_last: for strides on channel
// dimension could suggest desired memory_layout, but it doesn't affect
// memory storage
set_fields(
is_contiguous,
bool_is_channels_last_contiguous(false),
bool_is_channels_last_3d_contiguous(false),
bool_is_channels_last(false),
bool_is_channels_last_3d(false),
bool_is_non_overlapping_and_dense(
is_contiguous || compute_non_overlapping_and_dense()));
}
}
/**
* Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
* storage_offset) from one TensorImpl to another TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
* [ TensorImpl Shallow-Copying ].
*/
static void copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
const c10::VariableVersion& version_counter,
bool allow_tensor_metadata_change);
/**
* Copy the tensor metadata fields (e.g. sizes / strides / storage pointer /
* storage_offset) from one TensorImpl to another TensorImpl.
*
* For usage of `version_counter` and `allow_tensor_metadata_change`, see NOTE
* [ TensorImpl Shallow-Copying ].
*/
static void copy_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
c10::VariableVersion&& version_counter,
bool allow_tensor_metadata_change);
private:
static void copy_tensor_metadata_except_version_counter(
const TensorImpl* src_impl,
TensorImpl* dest_impl,
bool allow_tensor_metadata_change);
protected:
// Error message to show when the user tries to change tensor metadata on
// Tensor created from .data or .detach().
//
// See NOTE [ Metadata Change for a Detached Tensor ] for details.
static const char* const err_msg_tensor_metadata_change_not_allowed;
static void copy_generic_tensor_metadata(
const TensorImpl* src_impl,
TensorImpl* dest_impl);
public:
void set_storage_access_should_throw() {
storage_access_should_throw_ = true;
}
bool owns_pyobj() {
return reinterpret_cast<uintptr_t>(pyobj_) & 1;
}
void set_owns_pyobj(bool b) {
pyobj_ = reinterpret_cast<PyObject*>(
reinterpret_cast<uintptr_t>(_unchecked_untagged_pyobj()) | b);
}
public:
void set_custom_sizes_strides(SizesStridesPolicy policy) {
custom_sizes_strides_ = static_cast<uint8_t>(policy);
refresh_sizes_strides_policy();
}
void set_python_custom_sizes_strides(SizesStridesPolicy policy) {
python_custom_sizes_strides_ = static_cast<uint8_t>(policy);
refresh_sizes_strides_policy();
}
void set_custom_device(bool custom_device) {
custom_device_ = custom_device;
refresh_device_policy();
}
void set_custom_layout(bool custom_layout) {
custom_layout_ = custom_layout;
refresh_layout_policy();
}
void set_python_custom_device(bool custom_device) {
python_custom_device_ = custom_device;
refresh_device_policy();
}
void set_python_custom_layout(bool custom_layout) {
python_custom_layout_ = custom_layout;
refresh_layout_policy();
}
protected:
void refresh_sizes_strides_policy() {
if (has_symbolic_sizes_strides_) {
sizes_strides_policy_ =
static_cast<uint8_t>(SizesStridesPolicy::CustomSizes);
} else {
sizes_strides_policy_ =
std::max(custom_sizes_strides_, python_custom_sizes_strides_);
}
}
void refresh_device_policy() {
device_policy_ = custom_device_ || python_custom_device_;
}
void refresh_layout_policy() {
layout_policy_ = custom_layout_ || python_custom_layout_;
}
protected:
Storage storage_;
private:
// This pointer points to an AutogradMeta struct that stores autograd-specific
// fields (such as grad_ / grad_fn_ / grad_accumulator_). This pointer always
// has unique ownership (meaning only one TensorImpl can own it at a time).
//
// autograd_meta_ can be nullptr, as an optimization. When this occurs, it is
// equivalent to having an autograd_meta_ pointing to a default constructed
// AutogradMeta; intuitively, tensors which don't require grad will have this
// field set to null.
//
// This means accessors on autograd_meta_ have to be careful to test if they
// got a nullptr, and handle default behavior appropriately in that case.
//
// Note that we don't enforce the invariant that if the AutogradMeta is
// default constructed, it is nullptr (to do this, we'd have to continuously
// check if an AutogradMeta became, by mutation, equal to the default
// constructed form. (This might be useful, but it seems rare enough that
// a requires_grad=True variable will turn back into the requires_grad=False
// version.) So there are three representable states:
//
// 1. autograd_meta_ == nullptr
// 2. autograd_meta_ is default constructed (semantically, same as (1))
// 3. autograd_meta_ has nontrivial information content
//
std::unique_ptr<c10::AutogradMetaInterface> autograd_meta_ = nullptr;
protected:
std::unique_ptr<c10::ExtraMeta> extra_meta_ = nullptr;
c10::VariableVersion version_counter_;
// This field contains the interpreter tag for this object. See
// Note [Python interpreter tag] for general context
//
// Note [Memory ordering on Python interpreter tag]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// What memory_order do we need when accessing this atomic? We don't
// need a single total modification order (as provided by
// memory_order_seq_cst) as pyobj_interpreter_ is monotonic: it can only
// transition from -1 to some positive integer and never changes afterwards.
// Because there is only one modification, it trivially already has a total
// modification order (e.g., we don't need fences or locked instructions on
// x86)
//
// In fact, one could make a reasonable argument that relaxed reads are OK,
// due to the presence of external locking (GIL) to ensure that interactions
// with other data structures are still correctly synchronized, so that
// we fall in the "Single-Location Data Structures" case as described in
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
// However, on x86, it doesn't matter if I use acquire or relaxed on the load
// as I get the same assembly in both cases. So I just use the more
// conservative acquire (which will impede compiler optimizations but I don't
// care)
std::atomic<impl::PyInterpreter*> pyobj_interpreter_;
// This field contains a reference to a PyObject representing this Tensor.
// If pyobj is nullptr, when we transfer Tensor to Python, we allocate a new
// PyObject for it and set this field. This field does not have to be
// protected by an atomic as it is only allowed to be accessed when you hold
// the GIL, or during destruction of the tensor.
//
// When a PyObject dies, you are obligated to clear this field
// (otherwise, you will try to use-after-free the pyobj); this currently
// occurs in THPVariable_clear in torch/csrc/autograd/python_variable.cpp
//
// NB: Ordinarily, this should not be a strong reference, as if the
// PyObject owns the Tensor, this would create a reference cycle.
// However, sometimes this ownership flips. To track who owns
// who, this has a single pointer tag indicating whether or not the
// C++ object owns the PyObject (the common case, zero, means PyObject
// owns the C++ object); see _unchecked_untagged_pyobj for raw access
// or check_pyobj for checked access. See references to PyObject
// resurrection in torch/csrc/autograd/python_variable.cpp
PyObject* pyobj_;
c10::impl::SizesAndStrides sizes_and_strides_;
int64_t storage_offset_ = 0;
// If sizes and strides are empty, the numel is 1!! However, most of the
// time, we will immediately set sizes to {0} and reset numel to 0.
// (Can't do that in the default initializers, because there's no way to
// spell "allocate a one-element array" for strides_).
int64_t numel_ = 1;
// INVARIANT: When storage is non-null, this type meta must
// agree with the type meta in storage
caffe2::TypeMeta data_type_;
// NOTE [c10::optional operator usage in CUDA]
// Our optional definition doesn't compile in .cu file if `value()` or
// `operator->` are used. Instead, we always use `operator*`.
// See https://github.com/pytorch/pytorch/issues/18496 for more info.
// If this is too burdensome to maintain, we can just
// manually implement this with an additional bool.
// INVARIANT: When storage is non-null, this Device must
// agree with the type meta in storage.
//
// INVARIANT: device_opt_ is only nullopt for undefined tensors
// (which do not have a device.)
c10::optional<c10::Device> device_opt_;
// default member initializers for bit-fields only available with -std=c++2a
// or -std=gnu++2a
inline void init_bitfields() {
is_contiguous_ = true;
is_channels_last_ = false;
is_channels_last_contiguous_ = false;
is_channels_last_3d_ = false;
is_channels_last_3d_contiguous_ = false;
is_non_overlapping_and_dense_ = true;
is_wrapped_number_ = false;
allow_tensor_metadata_change_ = true;
reserved_ = false;
sizes_strides_policy_ = static_cast<uint8_t>(SizesStridesPolicy::Default);
custom_sizes_strides_ = static_cast<uint8_t>(SizesStridesPolicy::Default);
python_custom_sizes_strides_ =
static_cast<uint8_t>(SizesStridesPolicy::Default);
python_custom_device_ = false;
python_custom_layout_ = false;
custom_device_ = false;
custom_layout_ = false;
device_policy_ = false;
layout_policy_ = false;
storage_access_should_throw_ = false;
has_symbolic_sizes_strides_ = false;
}
// Tensor is contiguous
bool is_contiguous_ : 1;
// Tensor is a subclass that does not permit storage access.
bool storage_access_should_throw_ : 1;
// Tensor is stored in the channels last 2d memory format, when dimensions
// order is (N)CHW and C-strides < W-strides < H-strides (< N-strides)
// (If size of any dimension is equal to 1, this dimension strides value
// is not taken into account).
bool is_channels_last_ : 1;
// Channels last contiguous tensor is channel last tensor which occupies
// contiguous memory block.
bool is_channels_last_contiguous_ : 1;
// Tensor is stored in the channels last 3d memory format, when dimensions
// order is (N)CDHW and C-strides < W-strides < H-strides < D - strides (<
// N-strides) (If size of any dimension is equal to 1, this dimension strides
// value is not taken into account).
bool is_channels_last_3d_ : 1;
// Channels last 3d contiguous tensor is channel last 3d tensor which occupies
// contiguous memory block.
bool is_channels_last_3d_contiguous_ : 1;
// Dense tensor is the tensor that store values in a contiguous block of
// memory. Non-overlapping tensor is the tensor in which elements occupy
// individual non-repetitive memory.
bool is_non_overlapping_and_dense_ : 1;
bool is_wrapped_number_ : 1;
// NOTE [ Metadata Change for a Detached Tensor ]
//
// Normally, a user is allowed to change the tensor metadata
// (e.g. sizes / strides / storage / storage_offset) of a tensor.
// However, if the tensor is created by `t1_detached = t1.data` in Python
// or `t1_detached = t1.detach()` in Python/C++, those changes to the
// tensor metadata of `t1_detached` will not be propagated back to the
// original tensor `t1`. In order to make such changes explicitly illegal,
// we created the `allow_tensor_metadata_change_` flag, to prevent users
// from changing metadata of the detached tensor and expecting the original
// tensor to also be updated.
//
// NOTE: For a full list of tensor metadata fields, please see
// `copy_tensor_metadata()` in TensorImpl and its subclasses to find
// which fields are copied by value.
bool allow_tensor_metadata_change_ : 1;
// we decide to keep reserved_ and it will
// live in Tensor after the split
// The logic is that if Extend() or ReserveSpace() were ever called,
// then subsequent Resize()s will not free up Storage.
bool reserved_ : 1;
// Call _custom() virtual methods for
// strides()/is_contiguous()/sizes()/dim()/numel()
// This is a combination of sizes_strides_custom_dispatch_
// and has_symbolic_sizes_strides_
uint8_t sizes_strides_policy_ : 2;
// Whether or not sizes_and_strides_ contains a symbolic value.
bool has_symbolic_sizes_strides_ : 1;
// Call _custom() virtual method for
// strides()/is_contiguous()/sizes()/dim()/numel()
uint8_t custom_sizes_strides_ : 2;
// Combo of custom_ and python_custom_
bool device_policy_ : 1;
bool layout_policy_ : 1;
// Call _custom() virtual method for device()
bool custom_device_ : 1;
// Call _custom() virtual method for layout()
bool custom_layout_ : 1;
// Call into Python for
// strides()/is_contiguous()/sizes()/dim()/numel()
uint8_t python_custom_sizes_strides_ : 2;
// Call into Python for device()
bool python_custom_device_ : 1;
// Call into Python for layout()
bool python_custom_layout_ : 1;
// The set of DispatchKeys which describe this tensor. NB: this
// does NOT include Autograd (historically, it did, but
// not anymore!)
//
// INVARIANT: extra_meta_->named_tensor_meta_ != nullptr <==>
// key_set_.has(DispatchKey::Named)
DispatchKeySet key_set_;
private:
// C10_TensorImpl_Size_Check_Dummy_Class needs to be friends with
// TensorImpl so it can inspect the size of private fields
template <
size_t cplusplus,
size_t clang_ver_major,
size_t gcc_ver,
size_t gcc_ver_minor,
size_t nvcc,
size_t cuda_version,
size_t cuda_version_major,
size_t ptr_size>
friend class C10_TensorImpl_Size_Check_Dummy_Class;
};
// Note [TensorImpl size constraints]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Changed the size of TensorImpl? If the size went down, good for
// you! Adjust the documentation below and the expected size.
// Did it go up? Read on...
//
// Struct size matters. In some production systems at Facebook, we have
// 400M live tensors during a training run. Do the math: every 64-bit
// word you add to Tensor is an extra 3.2 gigabytes in RAM.
//
// If you are a Facebook employee, you can check if the run in question
// has tipped you over the point using the command here:
// https://fburl.com/q5enpv98
//
// For reference, we OOMed at 160 bytes (20 words) per TensorImpl.
// This is not counting overhead from strides out-of-line allocation and
// StorageImpl space and this is from before we inlined sizes and strides
// directly into TensorImpl as SmallVectors.
//
// Our memory usage on 32-bit systems is suboptimal, but we're not checking
// for it at the moment (to help avoid rage inducing cycles when the
// 32-bit number is wrong).
//
// Current breakdown:
//
// vtable pointer
// strong refcount TODO: pack these into one word
// weak refcount
// storage pointer
// autograd metadata pointer
// named tensor metadata pointer
// version counter pointer
// Python interpreter pointer
// PyObject pointer
// SizesAndStrides size/pointer
// SizesAndStrides sizes (pre-allocated 0)
// SizesAndStrides sizes (pre-allocated 1)
// SizesAndStrides sizes (pre-allocated 2)
// SizesAndStrides sizes (pre-allocated 3)
// SizesAndStrides sizes (pre-allocated 4)
// SizesAndStrides strides (pre-allocated 0)
// SizesAndStrides strides (pre-allocated 1)
// SizesAndStrides strides (pre-allocated 2)
// SizesAndStrides strides (pre-allocated 3)
// SizesAndStrides strides (pre-allocated 4)
// storage offset
// numel
// data type, device, is_contiguous, storage_access_should_throw_, bitfields
// DispatchKeySet
//
// Various preprocessor macros we use to check that the
// TensorImpl size hasn't changed unexpectedly. We undef
// these later.
#ifndef __NVCC__
#define C10_NVCC 0
#else
#define C10_NVCC __NVCC__
#endif
#ifndef __CUDA_VER_MAJOR__
#define C10_CUDA_VERSION_MAJOR 0
#else
#define C10_CUDA_VERSION_MAJOR __CUDA_VER_MAJOR__
#endif
#ifndef CUDA_VERSION
#define C10_CUDA_VERSION 0
#else
#define C10_CUDA_VERSION CUDA_VERSION
#endif
#ifndef __clang_major__
#define C10_CLANG_MAJOR_VERSION 0
#else
#define C10_CLANG_MAJOR_VERSION __clang_major__
#endif
#ifndef __GNUC__
#define C10_GCC_VERSION 0
#else
#define C10_GCC_VERSION __GNUC__
#endif
#ifndef __GNUC_MINOR__
#define C10_GCC_VERSION_MINOR 0
#else
#define C10_GCC_VERSION_MINOR __GNUC_MINOR__
#endif
// We use a templatized class to both contain the logic of checking the sizes
// as well as to provide compile-time information that might be useful in
// figuring out why sizes may have changed.
// All the compile time information is given by the template fields that are
// always printed by the compiler when the static_assert fails.
template <
size_t cplusplus = __cplusplus,
size_t clang_ver_major = C10_CLANG_MAJOR_VERSION,
size_t gcc_ver = C10_GCC_VERSION,
size_t gcc_ver_minor = C10_GCC_VERSION_MINOR,
size_t nvcc = C10_NVCC,
size_t cuda_version = C10_CUDA_VERSION,
size_t cuda_version_major = C10_CUDA_VERSION_MAJOR,
size_t ptr_size = sizeof(void*)>
class C10_TensorImpl_Size_Check_Dummy_Class : private TensorImpl {
// Names of (non-bitfield) fields in TensorImpl; used to provide
// compile-time info about fields whose size changes unexpectedly.
enum class FieldNameEnum {
storage_,
autograd_meta_,
extra_meta_,
version_counter_,
pyobj_interpreter_,
pyobj_,
sizes_and_strides_,
storage_offset_,
numel_,
data_type_,
device_opt_,
key_set_,
TOTAL_SIZE
};
// Provides compile-time equality check that reveals what numbers
// were used and on which quantity
template <size_t Actual, size_t Expected, FieldNameEnum FiledName>
constexpr static bool are_equal() {
static_assert(
Actual == Expected,
"Actual and Expected sizes of a field did not match!");
return true;
}
// Provides compile-time <= check that reveals what numbers
// were used and on which quantity
template <size_t Actual, size_t Expected, FieldNameEnum FiledName>
constexpr static bool is_le() {
static_assert(
Actual <= Expected,
"Actual and Expected sizes of a field did not match!");
return true;
}
public:
// Compile-time check that TensorImpl field sizes are as expected
//
// Observed total sizes and associated versions
// If you find a flag that predicts when unique_ptr has 16 bytes
// on 64-bit systems or when sizes_and_strides_ is 84 vs 88 bytes
// on 32-bit systems you get a cookie!
// Length | LLVM | GCC | C++ | CUDA
// 192 | ? | 11.2 | 201703 | 11040
// 208 | ? | 11.2 | 201703 | 11040
// 208 | ? | 11.2 | 201402 | 11040
// 192 | ? | 11.2 | 201402 | 11040
// 160 | 12 | 4.2 | 201703 | 0
//
// To keep things clean, we split on systems here.
#if UINTPTR_MAX == 0xFFFFFFFF
// This is a 32-bit system
static constexpr bool check_sizes() {
constexpr size_t tsize = 20 * sizeof(int64_t);
// clang-format off
are_equal<sizeof(storage_), 4, FieldNameEnum::storage_>();
are_equal<sizeof(autograd_meta_), 4, FieldNameEnum::autograd_meta_>();
are_equal<sizeof(extra_meta_), 4, FieldNameEnum::extra_meta_>();
are_equal<sizeof(version_counter_), 4, FieldNameEnum::version_counter_>();
are_equal<sizeof(pyobj_interpreter_), 4, FieldNameEnum::pyobj_interpreter_>();
are_equal<sizeof(pyobj_), 4, FieldNameEnum::pyobj_>();
is_le<sizeof(sizes_and_strides_), 88, FieldNameEnum::sizes_and_strides_>();
are_equal<sizeof(storage_offset_), 8, FieldNameEnum::storage_offset_>();
are_equal<sizeof(numel_), 8, FieldNameEnum::numel_>();
are_equal<sizeof(data_type_), 2, FieldNameEnum::data_type_>();
are_equal<sizeof(device_opt_), 3, FieldNameEnum::device_opt_>();
are_equal<sizeof(key_set_), 8, FieldNameEnum::key_set_>();
is_le<sizeof(TensorImpl), tsize, FieldNameEnum::TOTAL_SIZE>();
// clang-format on
return true;
}
#else
// This is a 64-bit system
static constexpr bool check_sizes() {
constexpr size_t tsize = 26 * sizeof(int64_t);
// clang-format off
are_equal<sizeof(storage_), 8, FieldNameEnum::storage_>();
// On some systems involving NVCC the size of unique_ptr is 16 bytes. We haven't
// figured out how to detect those via macro preprocessors yet, so we use <=
// comparisons for the relevant fields.
is_le<sizeof(autograd_meta_), 16, FieldNameEnum::autograd_meta_>();
is_le<sizeof(extra_meta_), 16, FieldNameEnum::extra_meta_>();
are_equal<sizeof(version_counter_), 8, FieldNameEnum::version_counter_>();
are_equal<sizeof(pyobj_interpreter_), 8, FieldNameEnum::pyobj_interpreter_>();
are_equal<sizeof(pyobj_), 8, FieldNameEnum::pyobj_>();
are_equal<sizeof(sizes_and_strides_), 88, FieldNameEnum::sizes_and_strides_>();
are_equal<sizeof(storage_offset_), 8, FieldNameEnum::storage_offset_>();
are_equal<sizeof(numel_), 8, FieldNameEnum::numel_>();
are_equal<sizeof(data_type_), 2, FieldNameEnum::data_type_>();
are_equal<sizeof(device_opt_), 3, FieldNameEnum::device_opt_>();
are_equal<sizeof(key_set_), 8, FieldNameEnum::key_set_>();
is_le<sizeof(TensorImpl), tsize, FieldNameEnum::TOTAL_SIZE>();
// clang-format on
return true;
}
#endif
};
// We use a class to encapsulate size-checking logic with
// templates to capture sizes and flags. We call this within
// a static assert to prove there is no run-time behaviour.
// Since the methods we call return either true or fail their
// own static_asserts, we should never see the error messages
// below. We have to provide it though for c++ <17.
static_assert(
C10_TensorImpl_Size_Check_Dummy_Class<>::check_sizes(),
"You should not see this message.");
// Clean up after ourselves
#undef C10_NVCC
#undef C10_CUDA_VERSION_MAJOR
#undef C10_CUDA_VERSION
#undef C10_CLANG_MAJOR_VERSION
#undef C10_GCC_VERSION
#undef C10_GCC_VERSION_MINOR
} // namespace c10
C10_CLANG_DIAGNOSTIC_POP()
|