1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
|
#pragma once
#include <c10/core/Backend.h>
#include <c10/core/DefaultDtype.h>
#include <c10/core/Device.h>
#include <c10/core/DispatchKeySet.h>
#include <c10/core/Layout.h>
#include <c10/core/MemoryFormat.h>
#include <c10/core/ScalarType.h>
#include <c10/core/ScalarTypeToTypeMeta.h>
#include <c10/macros/Macros.h>
#include <c10/util/C++17.h>
#include <c10/util/Optional.h>
#include <cstddef>
#include <iosfwd>
#include <utility>
namespace c10 {
DispatchKey computeDispatchKey(
c10::optional<ScalarType> dtype,
c10::optional<Layout> layout,
c10::optional<Device> device);
inline ScalarType dtype_or_default(c10::optional<ScalarType> dtype) {
return value_or_else(dtype, [] { return get_default_dtype_as_scalartype(); });
}
inline caffe2::TypeMeta dtype_or_default(
c10::optional<caffe2::TypeMeta> dtype) {
return value_or_else(dtype, [] { return get_default_dtype(); });
}
inline Layout layout_or_default(c10::optional<Layout> layout) {
return layout.value_or(kStrided);
}
inline Device device_or_default(c10::optional<Device> device) {
return value_or_else(device, [] { return Device(kCPU); });
}
inline bool pinned_memory_or_default(c10::optional<bool> pinned_memory) {
return pinned_memory.value_or(false);
}
/// A class to encapsulate construction axes of an Tensor. TensorOptions was
/// designed to support the Python style API for specifying construction options
/// on factory functions, e.g.,
///
/// torch.zeros(2, 3, dtype=torch.int32)
///
/// Because C++ doesn't natively support keyword arguments, there must be
/// another way of specifying keyword-like arguments. TensorOptions is a
/// builder class which can be used to construct this "dictionary" of keyword
/// arguments: functions which support TensorOptions conventionally take this
/// argument optionally as their last argument.
///
/// WARNING: In PyTorch, there are `torch::` variants of factory functions,
/// e.g., torch::zeros for at::zeros. These return Variables (while the
/// stock ATen functions return plain Tensors). If you mix these functions
/// up, you WILL BE SAD.
///
/// Rather than use the constructor of this class directly, you should prefer to
/// use the constructor functions, and then chain setter methods on top of them.
///
/// at::device(at::kCUDA).dtype(kInt)
/// at::dtype(at::kInt)
///
/// Additionally, anywhere a TensorOptions is expected, you can directly
/// pass at::kCUDA / at::kInt, and it will implicitly convert to a
/// TensorOptions.
///
/// Here are some recommended ways to create a 2x2 tensor of zeros
/// with certain properties. These all *implicitly* make use of
/// TensorOptions, even if they don't mention the class explicitly:
///
/// at::zeros({2,2}, at::kCUDA);
/// at::zeros({2,2}, at::kLong);
/// at::zeros({2,2}, at::device(at::kCUDA).dtype(at::kLong()));
/// at::zeros({2,2}, at::device({at::kCUDA, 1})); // place on device 1
/// at::zeros({2,2}, at::requires_grad());
///
/// NOTE [ TensorOptions Constructors ]
///
/// TensorOptions is like a dictionary with entries from the set:
/// {requires_grad, device, dtype, layout}, where each entry may be
/// unspecified (i.e., is optional). It is used to specify the properties of
/// tensors in many places both in C++ internal and API, e.g., tensor factory
/// methods like `at::empty({10}, options)`, tensor conversions like
/// `tensor.to(...)`, etc.
///
/// To provide a simple API that is consistent with Python, where one can do
/// `torch.empty(sizes, X)` with `X` being a `torch.device`, `torch.dtype`, or a
/// `torch.layout`, we want TensorOptions to be implicitly convertible from
/// `ScalarType dtype`, `Layout layout` and `Device device`. Therefore, we have
/// three implicit constructors from each of these three types.
///
/// This is sufficient for `ScalarType` and `Layout` as they are simple Enum
/// classes. However, `Device` is an ordinary class with implicit constructors
/// `Device(DeviceType, DeviceIndex = -1)` and `Device(std::string)` to be
/// consistent with Python API, where strings are treated as equivalent with a
/// `torch.device` object (e.g., "cuda:1" can be passed to everywhere a
/// `torch.device("cuda:1")` is accepted). To support the syntax
/// `at::empty({10}, {kCUDA, 1})` and `tensor.to(kCUDA)`, we need to make sure
/// that `TensorOptions` is implicitly constructible with any argments that a
/// `Device` can constructed from. So we have,
///
/// /* implicit */ TensorOptions(T&& device) : TensorOptions() {
/// this->set_device(device);
/// }
///
/// template <typename... Args,
/// typename = std::enable_if_t<std::is_constructible<Device,
/// Args&&...>::value>>
/// /* implicit */ TensorOptions(Args&&... args)
/// : TensorOptions(Device(std::forward<Args>(args)...)) {}
///
///
/// But this will be problematic. Consider this: `TensorOptions({kCUDA, 1})`.
/// Compiler will compain about ambiguity between the copy constructor and the
/// `Device` constructor because `{kCUDA, 1}` can be converted to both a
/// `TensorOption` and a `Device`.
///
/// To get around this, we templatize the `Device` constructor. Since overload
/// resolution is done before template resolution, our problem is solved.
DispatchKey computeDispatchKey(
optional<ScalarType> dtype,
optional<Layout> layout,
optional<Device> device);
struct C10_API TensorOptions {
TensorOptions()
: requires_grad_(false),
pinned_memory_(false),
has_device_(false),
has_dtype_(false),
has_layout_(false),
has_requires_grad_(false),
has_pinned_memory_(false),
has_memory_format_(false) {}
/// Constructs a `TensorOptions` object with the given layout.
/* implicit */ TensorOptions(Layout layout) : TensorOptions() {
this->set_layout(layout);
}
/// Constructs a `TensorOptions` object with the given device.
/// See NOTE [ TensorOptions Constructors ] on why this is templatized.
template <
typename T,
typename = std::enable_if_t<std::is_same<std::decay_t<T>, Device>::value>>
/* implicit */ TensorOptions(T&& device) : TensorOptions() {
this->set_device(std::forward<T>(device));
}
/// Constructs a `TensorOptions` object from arguments allowed in `Device`
/// constructors.
///
/// See NOTE [ TensorOptions Constructors ].
///
/// NB: Ideally we only allow implicit constructors here. But there is no easy
/// way to detect them. So we have this one that allows explicit
/// constructors too.
template <
typename... Args,
typename =
std::enable_if_t<std::is_constructible<Device, Args&&...>::value>>
/* implicit */ TensorOptions(Args&&... args)
: TensorOptions(Device(std::forward<Args>(args)...)) {}
/// Constructs a `TensorOptions` object with the given dtype.
/* implicit */ TensorOptions(caffe2::TypeMeta dtype) : TensorOptions() {
this->set_dtype(dtype);
}
/// legacy constructor to support ScalarType
/* implicit */ TensorOptions(ScalarType dtype) : TensorOptions() {
this->set_dtype(dtype);
}
/// Constructs a `TensorOptions` object with the given memory format.
/* implicit */ TensorOptions(MemoryFormat memory_format) : TensorOptions() {
set_memory_format(memory_format);
}
/// Return a copy of `TensorOptions` with `device` set to the given one, or
/// cleared if `device` is `nullopt`.
C10_NODISCARD TensorOptions
device(c10::optional<Device> device) const noexcept {
TensorOptions r = *this;
r.set_device(device);
return r;
}
/// Return a copy of `TensorOptions` with `device` set to the given one.
/// (This overload ensures that variadic template c10::optional constructor
/// for Device work correctly.)
template <typename... Args>
C10_NODISCARD TensorOptions device(Args&&... args) const noexcept {
return device(
c10::optional<Device>(c10::in_place, std::forward<Args>(args)...));
}
/// Return a copy of `TensorOptions`, but with device set to CUDA, and the
/// device index set to the given one.
///
/// TODO: This function encourages bad behavior (assuming CUDA is
/// the only device that matters). Get rid of it / rename it.
C10_NODISCARD TensorOptions
device_index(c10::DeviceIndex device_index) const noexcept {
return device(Device::Type::CUDA, device_index);
}
/// Return a copy of `TensorOptions` with `dtype` set to the given one.
C10_NODISCARD TensorOptions
dtype(c10::optional<caffe2::TypeMeta> dtype) const noexcept {
TensorOptions r = *this;
r.set_dtype(dtype);
return r;
}
// legacy function to support ScalarType
C10_NODISCARD TensorOptions
dtype(c10::optional<ScalarType> dtype) const noexcept {
TensorOptions r = *this;
r.set_dtype(dtype);
return r;
}
// Since dtype is taken...
template <typename T>
TensorOptions& dtype() {
dtype_ = caffe2::TypeMeta::Make<T>();
has_dtype_ = true;
return *this;
}
/// Sets the layout of the `TensorOptions`.
C10_NODISCARD TensorOptions
layout(c10::optional<Layout> layout) const noexcept {
TensorOptions r = *this;
r.set_layout(layout);
return r;
}
/// Sets the `requires_grad` property of the `TensorOptions`.
C10_NODISCARD TensorOptions
requires_grad(c10::optional<bool> requires_grad) const noexcept {
TensorOptions r = *this;
r.set_requires_grad(requires_grad);
return r;
}
/// Sets the `pinned_memory` property on the `TensorOptions`.
C10_NODISCARD TensorOptions
pinned_memory(c10::optional<bool> pinned_memory) const noexcept {
TensorOptions r = *this;
r.set_pinned_memory(pinned_memory);
return r;
}
/// Sets the `memory_format` property on `TensorOptions`.
C10_NODISCARD TensorOptions
memory_format(c10::optional<MemoryFormat> memory_format) const noexcept {
TensorOptions r = *this;
r.set_memory_format(memory_format);
return r;
}
/// Returns the device of the `TensorOptions`.
Device device() const noexcept {
return device_or_default(device_opt());
}
/// Returns whether the device is specified.
bool has_device() const noexcept {
return has_device_;
}
/// Returns the device of the `TensorOptions`, or `c10::nullopt` if
/// device is not specified.
c10::optional<Device> device_opt() const noexcept {
return has_device_ ? c10::make_optional(device_) : c10::nullopt;
}
/// Returns the device index of the `TensorOptions`.
int32_t device_index() const noexcept {
return device().index();
}
/// Returns the dtype of the `TensorOptions`.
caffe2::TypeMeta dtype() const noexcept {
return dtype_or_default(dtype_opt());
}
/// Returns whether the dtype is specified.
bool has_dtype() const noexcept {
return has_dtype_;
}
/// Returns the dtype of the `TensorOptions`, or `c10::nullopt` if
/// device is not specified.
c10::optional<caffe2::TypeMeta> dtype_opt() const noexcept {
return has_dtype_ ? c10::make_optional(dtype_) : c10::nullopt;
}
/// Returns the layout of the `TensorOptions`.
Layout layout() const noexcept {
return layout_or_default(layout_opt());
}
/// Returns whether the layout is specified.
bool has_layout() const noexcept {
return has_layout_;
}
/// Returns the layout of the `TensorOptions`, or `c10::nullopt` if
/// layout is not specified.
c10::optional<Layout> layout_opt() const noexcept {
return has_layout_ ? c10::make_optional(layout_) : c10::nullopt;
}
/// Returns the `requires_grad` property of the `TensorOptions`.
bool requires_grad() const noexcept {
return has_requires_grad_ ? requires_grad_ : false;
}
/// Returns whether the `requires_grad` is specified.
bool has_requires_grad() const noexcept {
return has_requires_grad_;
}
/// Returns the `requires_grad` property of the `TensorOptions`, or
/// `c10::nullopt` if `requires_grad` is not specified.
c10::optional<bool> requires_grad_opt() const noexcept {
return has_requires_grad_ ? c10::make_optional(requires_grad_)
: c10::nullopt;
}
/// Returns the `pinned_memory` property of the `TensorOptions`.
bool pinned_memory() const noexcept {
return pinned_memory_or_default(pinned_memory_opt());
}
/// Returns whether the `pinned_memory` is specified.
bool has_pinned_memory() const noexcept {
return has_pinned_memory_;
}
/// Returns if the layout is sparse
bool is_sparse() const {
return layout_ == c10::Layout::Sparse;
}
bool is_sparse_csr() const {
return layout_ == c10::Layout::SparseCsr;
}
// For compatibility with legacy tensor.type() comparisons
bool type_equal(const TensorOptions& other) const {
return computeDispatchKey() == other.computeDispatchKey() &&
typeMetaToScalarType(dtype_) == typeMetaToScalarType(other.dtype());
}
/// Returns the `pinned_memory` property of the `TensorOptions`, or
/// `c10::nullopt` if `pinned_memory` is not specified.
c10::optional<bool> pinned_memory_opt() const noexcept {
return has_pinned_memory_ ? c10::make_optional(pinned_memory_)
: c10::nullopt;
}
/// Returns whether the `memory_layout` is specified
bool has_memory_format() const noexcept {
return has_memory_format_;
}
// NB: memory_format() getter is PURPOSELY not defined, as the default
// behavior of memory_format varies from function to function.
/// Returns the `memory_layout` property of `TensorOptions, or
/// `c10::nullopt` if `memory_format` is not specified.
c10::optional<MemoryFormat> memory_format_opt() const noexcept {
return has_memory_format_ ? c10::make_optional(memory_format_)
: c10::nullopt;
}
// Resolves the ATen backend specified by the current construction axes.
// TODO: Deprecate this
Backend backend() const {
return at::dispatchKeyToBackend(computeDispatchKey());
}
/// Return the right-biased merge of two TensorOptions. This has the
/// effect of overwriting settings from self with specified options
/// of options.
///
/// NB: This merging operation does NOT respect device merges.
/// For example, if you device({kCUDA, 1}).merge_in(kCUDA)
/// you will get kCUDA in the end! Functions like Tensor.new_empty
/// ensure the right device is selected anyway by way of a
/// device guard.
///
TensorOptions merge_in(TensorOptions options) const noexcept {
TensorOptions merged = *this;
if (options.has_device())
merged.set_device(options.device_opt());
if (options.has_dtype())
merged.set_dtype(options.dtype_opt());
if (options.has_layout())
merged.set_layout(options.layout_opt());
// NB: requires grad is right biased; not a logical AND/OR!
if (options.has_requires_grad())
merged.set_requires_grad(options.requires_grad_opt());
if (options.has_pinned_memory())
merged.set_pinned_memory(options.pinned_memory_opt());
if (options.has_memory_format())
merged.set_memory_format(options.memory_format_opt());
return merged;
}
// TODO remove after TensorOptions rationalization
TensorOptions merge_memory_format(
c10::optional<MemoryFormat> optional_memory_format) const noexcept {
TensorOptions merged = *this;
if (optional_memory_format.has_value()) {
merged.set_memory_format(*optional_memory_format);
}
return merged;
}
// INVARIANT: computeDispatchKey returns only the subset of dispatch keys for
// which dispatchKeyToBackend is injective, if it is defined at all (for
// the most part, this just means that this function never returns an
// Autograd key)
DispatchKey computeDispatchKey() const {
return c10::computeDispatchKey(
optTypeMetaToScalarType(dtype_opt()), layout_opt(), device_opt());
}
private:
// These methods are currently private because I'm not sure if it's wise
// to actually publish them. They are methods because I need them in
// the constructor and the functional API implementation.
//
// If you really, really need it, you can make these public, but check if you
// couldn't just do what you need with the functional API. Similarly, these
// methods are not chainable, because if you wanted chaining, you probably
// want to use the functional API instead. (It's probably OK to make
// these chainable, because these functions are all explicitly annotated
// with a ref-qualifier, the trailing &, that makes them illegal to call
// on temporaries.)
/// Mutably set the device of `TensorOptions`.
void set_device(c10::optional<Device> device) & noexcept {
if (device) {
device_ = *device;
has_device_ = true;
} else {
has_device_ = false;
}
}
/// Mutably set the dtype of `TensorOptions`.
void set_dtype(c10::optional<caffe2::TypeMeta> dtype) & noexcept {
if (dtype) {
dtype_ = *dtype;
has_dtype_ = true;
} else {
has_dtype_ = false;
}
}
// legacy function to support ScalarType
void set_dtype(c10::optional<ScalarType> dtype) & noexcept {
if (dtype) {
dtype_ = scalarTypeToTypeMeta(*dtype);
has_dtype_ = true;
} else {
has_dtype_ = false;
}
}
/// Mutably set the layout of `TensorOptions`.
void set_layout(c10::optional<Layout> layout) & noexcept {
if (layout) {
layout_ = *layout;
has_layout_ = true;
} else {
has_layout_ = false;
}
}
/// Mutably set the `requires_grad` property of `TensorOptions`.
void set_requires_grad(c10::optional<bool> requires_grad) & noexcept {
if (requires_grad) {
requires_grad_ = *requires_grad;
has_requires_grad_ = true;
} else {
has_requires_grad_ = false;
}
}
/// Mutably set the `pinned_memory` property of `TensorOptions`.
void set_pinned_memory(c10::optional<bool> pinned_memory) & noexcept {
if (pinned_memory) {
pinned_memory_ = *pinned_memory;
has_pinned_memory_ = true;
} else {
has_pinned_memory_ = false;
}
}
/// Mutably set the `memory_Format` property of `TensorOptions`.
void set_memory_format(c10::optional<MemoryFormat> memory_format) & noexcept {
if (memory_format) {
memory_format_ = *memory_format;
has_memory_format_ = true;
} else {
has_memory_format_ = false;
}
}
// WARNING: If you edit TensorOptions to add more options, you
// may need to adjust the implementation of Tensor::options.
// The criteria for whether or not Tensor::options must be adjusted
// is whether or not the new option you added should preserved
// by functions such as empty_like(); if it should be preserved,
// you must adjust options().
//
// TODO: MemoryFormat is not implemented in this way
// NB: We didn't use c10::optional here, because then we can't pack
// the has_***_ boolean fields.
Device device_ = at::kCPU; // 16-bit
caffe2::TypeMeta dtype_ = caffe2::TypeMeta::Make<float>(); // 16-bit
Layout layout_ = at::kStrided; // 8-bit
MemoryFormat memory_format_ = MemoryFormat::Contiguous; // 8-bit
// Bitmask required here to get this to fit inside 32 bits (or even 64 bits,
// for that matter)
bool requires_grad_ : 1;
bool pinned_memory_ : 1;
bool has_device_ : 1;
bool has_dtype_ : 1;
bool has_layout_ : 1;
bool has_requires_grad_ : 1;
bool has_pinned_memory_ : 1;
bool has_memory_format_ : 1;
};
// We should aspire to fit in one machine-size word; but a size greater than two
// words is too much. (We are doing terribly on 32-bit archs, where we require
// three machine size words to store tensor options. Eek!)
static_assert(
sizeof(TensorOptions) <= sizeof(int64_t) * 2,
"TensorOptions must fit in 128-bits");
/// Convenience function that returns a `TensorOptions` object with the `dtype`
/// set to the given one.
inline TensorOptions dtype(caffe2::TypeMeta dtype) {
return TensorOptions().dtype(dtype);
}
// legacy function to support ScalarType
inline TensorOptions dtype(ScalarType dtype) {
return TensorOptions().dtype(scalarTypeToTypeMeta(dtype));
}
/// Convenience function that returns a `TensorOptions` object with the `layout`
/// set to the given one.
inline TensorOptions layout(Layout layout) {
return TensorOptions().layout(layout);
}
/// Convenience function that returns a `TensorOptions` object with the `device`
/// set to the given one.
inline TensorOptions device(Device device) {
return TensorOptions().device(std::move(device));
}
/// Convenience function that returns a `TensorOptions` object with the
/// `device` set to CUDA and the `device_index` set to the given one.
inline TensorOptions device_index(int16_t device_index) {
return TensorOptions().device_index(
static_cast<c10::DeviceIndex>(device_index));
}
/// Convenience function that returns a `TensorOptions` object with the
/// `requires_grad` set to the given one.
inline TensorOptions requires_grad(bool requires_grad = true) {
return TensorOptions().requires_grad(requires_grad);
}
/// Convenience function that returns a `TensorOptions` object with the
/// `memory_format` set to the given one.
inline TensorOptions memory_format(MemoryFormat memory_format) {
return TensorOptions().memory_format(memory_format);
}
C10_API std::ostream& operator<<(
std::ostream& stream,
const TensorOptions& options);
template <typename T>
inline TensorOptions dtype() {
return dtype(caffe2::TypeMeta::Make<T>());
}
inline std::string toString(const TensorOptions options) {
std::ostringstream stream;
stream << options;
return stream.str();
}
// This is intended to be a centralized location by which we can determine
// what an appropriate DispatchKey for a tensor is.
inline DispatchKey computeDispatchKey(
c10::optional<ScalarType> dtype,
c10::optional<Layout> layout,
c10::optional<Device> device) {
const auto layout_ = layout_or_default(layout);
const auto device_ = device_or_default(device);
switch (layout_) {
case Layout::Strided: {
const auto dtype_ = dtype_or_default(dtype);
switch (device_.type()) {
#define DO_CASE(device, _) \
case DeviceType::device: { \
if (isQIntType(dtype_)) { \
return DispatchKey::Quantized##device; \
} \
return DispatchKey::device; \
}
C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, unused)
#undef DO_CASE
case DeviceType::FPGA:
return DispatchKey::FPGA;
case DeviceType::ORT:
return DispatchKey::ORT;
case DeviceType::Vulkan:
return DispatchKey::Vulkan;
case DeviceType::Metal:
return DispatchKey::Metal;
case DeviceType::MKLDNN:
case DeviceType::OPENGL:
case DeviceType::OPENCL:
case DeviceType::IDEEP:
TORCH_INTERNAL_ASSERT(
0,
"This is a grandfathered Caffe2 device type ",
device_.type(),
", it shouldn't ever convert to a DispatchKey. File a bug describing what you were doing if you think this is in error.");
default:
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Unsupported device type for dense layout: ",
device_.type());
}
}
case Layout::Sparse:
switch (device_.type()) {
#define DO_CASE(device, _) \
case DeviceType::device: { \
return DispatchKey::Sparse##device; \
}
C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, unused)
#undef DO_CASE
default:
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Unsupported device type for sparse layout: ",
device_.type());
}
case Layout::Mkldnn:
switch (device_.type()) {
case DeviceType::CPU:
return DispatchKey::MkldnnCPU;
default:
TORCH_CHECK_NOT_IMPLEMENTED(
false,
"Unsupported device type for mkldnn layout: ",
device_.type());
}
case Layout::SparseCsr:
case Layout::SparseCsc:
case Layout::SparseBsr:
case Layout::SparseBsc:
switch (device_.type()) {
case DeviceType::CPU:
return DispatchKey::SparseCsrCPU;
case DeviceType::CUDA:
return DispatchKey::SparseCsrCUDA;
default:
AT_ERROR(
"Unsupported device type for ",
layout_,
" layout: ",
device_.type());
}
default:
TORCH_CHECK(false, "Unsupported layout: ", layout_);
}
}
inline Layout dispatchKeyToLayout(DispatchKey dispatch_key) {
switch (dispatch_key) {
#define DO_CASE(bc, _) case DispatchKey::Sparse##bc:
C10_FORALL_BACKEND_COMPONENTS(DO_CASE, unused)
#undef DO_CASE
return Layout::Sparse;
case DispatchKey::SparseCsrCPU:
case DispatchKey::SparseCsrCUDA:
TORCH_CHECK(
false,
"Cannot map DispatchKey ",
dispatch_key,
" to a unique layout.");
case DispatchKey::MkldnnCPU:
return Layout::Mkldnn;
default:
return Layout::Strided;
}
}
inline DeviceType dispatchKeyToDeviceType(DispatchKey dispatch_key) {
switch (dispatch_key) {
// stuff that's real
#define DO_CASE(suffix, prefix) \
case DispatchKey::prefix##suffix: \
return DeviceType::suffix;
#define DO_CASES(_, prefix) C10_FORALL_BACKEND_DEVICE_TYPES(DO_CASE, prefix)
C10_FORALL_FUNCTIONALITY_KEYS(DO_CASES)
#undef DO_CASES
#undef DO_CASE
case DispatchKey::MkldnnCPU:
return DeviceType::CPU;
case DispatchKey::Vulkan:
return DeviceType::Vulkan;
case DispatchKey::ORT:
return DeviceType::ORT;
default:
TORCH_CHECK(
false,
"DispatchKey ",
dispatch_key,
" doesn't correspond to a device");
}
}
inline TensorOptions dispatchKeyToTensorOptions(DispatchKey dispatch_key) {
return TensorOptions()
.layout(dispatchKeyToLayout(dispatch_key))
.device(dispatchKeyToDeviceType(dispatch_key));
}
namespace detail {
inline bool backend_supports_empty_operator(const TensorOptions options) {
// Quantized backends don't support at::empty().
// They have separate operators like at::empty_quantized() that take in
// extra information about how to quantize the tensor.
return !isQIntType(typeMetaToScalarType(options.dtype()));
}
} // namespace detail
} // namespace c10
|