1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
#include <gtest/gtest.h>
#include <cstddef>
#include <iterator>
#include <unordered_set>
#include <c10/core/DispatchKeySet.h>
#include <c10/util/irange.h>
using namespace c10;
// This test exists not to be comprehensive, but to more clearly show
// what the semantics of DispatchKeySet are.
TEST(DispatchKeySet, ShowSemantics) {
// the "CPU" dispatch key is an instance of a per-backend-functionality key.
// It corresponds to "dense" functionality, "CPU" backend.
// This means that it gets a dense functionality bit, and a cpu backend bit
// set.
auto dense_cpu_set = DispatchKeySet(DispatchKey::CPU);
ASSERT_TRUE(dense_cpu_set.has(DispatchKey::Dense));
ASSERT_TRUE(dense_cpu_set.has_backend(BackendComponent::CPUBit));
ASSERT_TRUE(dense_cpu_set.has(DispatchKey::CPU));
auto dense_lazy_set = DispatchKeySet(DispatchKey::Lazy);
ASSERT_TRUE(dense_lazy_set.has(DispatchKey::Dense));
ASSERT_TRUE(dense_lazy_set.has_backend(BackendComponent::LazyBit));
ASSERT_TRUE(dense_lazy_set.has(DispatchKey::Lazy));
// You can think of "Dense/Sparse", and "CPUBit/CUDABit", as "building block"
// dispatch keys. You are allowed to directly create keysets out of them!
auto dense_cpu_set_from_building_blocks = DispatchKeySet(DispatchKey::Dense) |
DispatchKeySet(BackendComponent::CPUBit);
ASSERT_TRUE(dense_cpu_set.has(DispatchKey::Dense));
ASSERT_TRUE(dense_cpu_set.has_backend(BackendComponent::CPUBit));
ASSERT_TRUE(dense_cpu_set.has(DispatchKey::CPU));
ASSERT_EQ(dense_cpu_set, dense_cpu_set_from_building_blocks);
// Similarly, the AutogradCUDA key gets 2 bits in the keyset:
// The "Autograd" functionality bit, and the "CUDA" backend bit
auto autograd_cuda = DispatchKeySet(DispatchKey::AutogradCUDA);
ASSERT_TRUE(autograd_cuda.has(DispatchKey::AutogradFunctionality));
ASSERT_TRUE(autograd_cuda.has_backend(BackendComponent::CUDABit));
// Because DispatchKeySet uses a condensed internal representation, you cannot
// use it to represent the FULL cross product of backends and functionalities
// for example:
auto autograd_dense_cpu_cuda = DispatchKeySet(
{DispatchKey::AutogradFunctionality,
DispatchKey::Dense,
DispatchKey::CUDA,
DispatchKey::CPU});
// this keyset has all of the building block keys:
ASSERT_TRUE(autograd_dense_cpu_cuda.has(DispatchKey::AutogradFunctionality));
ASSERT_TRUE(autograd_dense_cpu_cuda.has(DispatchKey::Dense));
ASSERT_TRUE(autograd_dense_cpu_cuda.has_backend(BackendComponent::CUDABit));
ASSERT_TRUE(autograd_dense_cpu_cuda.has_backend(BackendComponent::CPUBit));
// and it also has the "runtime" keys that correspond to the full
// cross-product of functionality
ASSERT_TRUE(autograd_dense_cpu_cuda.has(DispatchKey::AutogradCPU));
ASSERT_TRUE(autograd_dense_cpu_cuda.has(DispatchKey::AutogradCPU));
ASSERT_TRUE(autograd_dense_cpu_cuda.has(DispatchKey::CPU));
ASSERT_TRUE(autograd_dense_cpu_cuda.has(DispatchKey::CUDA));
// This means that there's no way to represent a keyset with, say, only
// Autograd CUDA + Dense CPU. Instead, you should think of a keyset as
// inheriting the full set of functionalities + backends of its keys. This
// means that the below keysets are all indistinguishable from each other.
ASSERT_EQ(
autograd_dense_cpu_cuda,
DispatchKeySet(
{DispatchKey::AutogradCUDA,
DispatchKey::AutogradCPU,
DispatchKey::CUDA,
DispatchKey::CPU}));
ASSERT_EQ(
autograd_dense_cpu_cuda,
DispatchKeySet({DispatchKey::AutogradCUDA, DispatchKey::CPU}));
ASSERT_EQ(
autograd_dense_cpu_cuda,
DispatchKeySet({DispatchKey::CUDA, DispatchKey::AutogradCPU}));
// ~~~~~~~~~~ DispatchKeySet iterators ~~~~~~~~~~~
// Iterators allow you to iterate individually through the DispatchKey's in a
// DispatchKeySet
auto empty_set = DispatchKeySet();
ASSERT_EQ(*empty_set.begin(), *empty_set.end());
// However, only keys that correspond to actual runtime indices of kernels in
// the operator table show up when you iterate through a keyset. i.e.
// DispatchKey::Dense, and BackendComponent::CPUBit won't show up in an
// iterator.
auto dense_cpu_iter = dense_cpu_set.begin();
ASSERT_EQ(*dense_cpu_iter++, DispatchKey::CPU);
ASSERT_EQ(*dense_cpu_iter, *dense_cpu_set.end());
auto autograd_dense_cpu_cuda_iter = autograd_dense_cpu_cuda.begin();
ASSERT_EQ(*autograd_dense_cpu_cuda_iter++, DispatchKey::CPU);
ASSERT_EQ(*autograd_dense_cpu_cuda_iter++, DispatchKey::CUDA);
ASSERT_EQ(*autograd_dense_cpu_cuda_iter++, DispatchKey::AutogradCPU);
ASSERT_EQ(*autograd_dense_cpu_cuda_iter++, DispatchKey::AutogradCUDA);
ASSERT_EQ(*autograd_dense_cpu_cuda_iter, *autograd_dense_cpu_cuda.end());
// But other "functionality bits" that are not defined per-backend DO get
// their own slots in the operator table.
auto mixed_keyset = DispatchKeySet(BackendComponent::CPUBit) |
DispatchKeySet(
{DispatchKey::FPGA, // runtime key
DispatchKey::Functionalize, // runtime key
DispatchKey::Dense}); // NOT a runtime key
auto mixed_iter = mixed_keyset.begin();
ASSERT_EQ(*mixed_iter++, DispatchKey::CPU);
ASSERT_EQ(*mixed_iter++, DispatchKey::FPGA);
ASSERT_EQ(*mixed_iter++, DispatchKey::Functionalize);
ASSERT_EQ(*mixed_iter, *mixed_keyset.end());
}
TEST(DispatchKeySet, Empty) {
DispatchKeySet empty_set;
for (uint8_t i = 0;
i <= static_cast<uint8_t>(DispatchKey::EndOfRuntimeBackendKeys);
i++) {
auto tid = static_cast<DispatchKey>(i);
if (tid == DispatchKey::Undefined)
continue;
ASSERT_FALSE(empty_set.has(tid));
}
ASSERT_TRUE(empty_set.empty());
DispatchKeySet empty_set2;
ASSERT_TRUE(empty_set == empty_set2);
}
// This covers all keys that correspond to a single backend bit, e.g.
// BackendComponent::CPUBit. Even though these are NOT runtime keys, we still
// allow adding them directly to a keyset
TEST(DispatchKeySet, SingletonBackendComponent) {
for (const auto i : c10::irange(1, num_backends)) {
auto tid = static_cast<DispatchKey>(i);
DispatchKeySet sing(tid);
ASSERT_EQ(sing, sing);
ASSERT_EQ(sing, DispatchKeySet().add(tid));
ASSERT_EQ(sing, sing.add(tid));
ASSERT_EQ(sing, sing | sing);
ASSERT_FALSE(sing.empty());
ASSERT_TRUE(sing.has(tid));
}
}
// This covers all keys that correspond to a single functionality bit:
// - runtime, not-per-backend functionality keys, e.g.
// DispatchKey::FuncTorchBatched
// - runtime, "fake backend" keys, e.g. DispatchKey::FPGA
// - NOT-runtime, per-backend functionality keys, e.g. DispatchKey::Dense
// Even though it's not a runtime key, we still allow adding it directly to a
// keyset.
// DispatchKey::
TEST(DispatchKeySet, SingletonFunctionalityKeys) {
for (const auto i : c10::irange(1, num_functionality_keys)) {
auto tid = static_cast<DispatchKey>(i);
DispatchKeySet sing(tid);
ASSERT_EQ(sing, sing);
ASSERT_EQ(sing, DispatchKeySet().add(tid));
ASSERT_EQ(sing, sing.add(tid));
ASSERT_EQ(sing, sing | sing);
ASSERT_FALSE(sing.empty());
ASSERT_TRUE(sing.has(tid));
ASSERT_EQ(sing.remove(tid), DispatchKeySet());
}
}
// This covers runtime keys that are per-backend,
// and take up more than one bit in a DispatchKeySet. They take up one
// functionality bit + one backend bit. e.g. CPU, CUDA, SparseCPU, SparseCUDA,
// AutogradCPU, AutogradCUDA
TEST(DispatchKeySet, SingletonPerBackendFunctionalityKeys) {
for (uint8_t i = static_cast<uint8_t>(DispatchKey::StartOfDenseBackends);
i <= static_cast<uint8_t>(DispatchKey::EndOfRuntimeBackendKeys);
i++) {
auto tid = static_cast<DispatchKey>(i);
// Skip these because they aren't real keys.
if (tid == DispatchKey::StartOfDenseBackends ||
tid == DispatchKey::StartOfSparseBackends ||
tid == DispatchKey::StartOfQuantizedBackends ||
tid == DispatchKey::StartOfAutogradFunctionalityBackends) {
continue;
}
DispatchKeySet sing(tid);
ASSERT_EQ(sing, sing);
ASSERT_EQ(sing, DispatchKeySet().add(tid));
ASSERT_EQ(sing, sing.add(tid));
ASSERT_EQ(sing, sing | sing);
ASSERT_FALSE(sing.empty());
ASSERT_TRUE(sing.has(tid));
auto functionality_key = toFunctionalityKey(tid);
auto backend_key = toBackendComponent(tid);
// These two sets should be equivalent:
// DispatchKeySet(DispatchKey::CPU)
// DispatchKeySet({DispatchKey::Dense, BackendComponent::CPUBit})
auto expected_ks =
DispatchKeySet(functionality_key) | DispatchKeySet(backend_key);
ASSERT_EQ(sing, expected_ks);
// These two sets should be equivalent:
// DispatchKeySet(DispatchKey::CPU).remove(DispatchKey::Dense)
// DispatchKeySet(BackendComponent::CPUBit)
expected_ks = DispatchKeySet(toBackendComponent(tid));
ASSERT_EQ(sing.remove(tid), expected_ks);
}
}
TEST(DispatchKeySet, DoubletonPerBackend) {
for (uint8_t i = static_cast<uint8_t>(DispatchKey::StartOfDenseBackends);
i <= static_cast<uint8_t>(DispatchKey::EndOfRuntimeBackendKeys);
i++) {
for (uint8_t j = i + 1;
j <= static_cast<uint8_t>(DispatchKey::EndOfRuntimeBackendKeys);
j++) {
ASSERT_LT(i, j);
auto tid1 = static_cast<DispatchKey>(i);
auto tid2 = static_cast<DispatchKey>(j);
// Skip these because they aren't real keys.
if (tid1 == DispatchKey::StartOfDenseBackends ||
tid1 == DispatchKey::StartOfSparseBackends ||
tid1 == DispatchKey::StartOfQuantizedBackends ||
tid1 == DispatchKey::StartOfNestedTensorBackends ||
tid1 == DispatchKey::StartOfAutogradFunctionalityBackends)
continue;
if (tid2 == DispatchKey::StartOfDenseBackends ||
tid2 == DispatchKey::StartOfSparseBackends ||
tid2 == DispatchKey::StartOfQuantizedBackends ||
tid2 == DispatchKey::StartOfNestedTensorBackends ||
tid2 == DispatchKey::StartOfAutogradFunctionalityBackends)
continue;
auto backend1 = toBackendComponent(tid1);
auto backend2 = toBackendComponent(tid2);
auto functionality1 = toFunctionalityKey(tid1);
auto functionality2 = toFunctionalityKey(tid2);
auto combined = DispatchKeySet({tid1, tid2});
// The combined set has the backend bits
ASSERT_TRUE(combined.has_backend(backend1));
ASSERT_TRUE(combined.has_backend(backend2));
// and it has the backend bits
ASSERT_TRUE(combined.has(functionality1));
ASSERT_TRUE(combined.has(functionality2));
// and it has the original two runtime keys
ASSERT_TRUE(combined.has(tid1));
ASSERT_TRUE(combined.has(tid2));
// Add all of the keys in the keyset to a real set
std::unordered_set<DispatchKey> visited_keys;
auto iter = combined.begin();
while (*iter != *combined.end()) {
visited_keys.insert(*iter);
++iter;
}
std::unordered_set<DispatchKey> expected_keys;
expected_keys.insert(
toRuntimePerBackendFunctionalityKey(functionality1, backend1));
expected_keys.insert(
toRuntimePerBackendFunctionalityKey(functionality1, backend2));
expected_keys.insert(
toRuntimePerBackendFunctionalityKey(functionality2, backend1));
expected_keys.insert(
toRuntimePerBackendFunctionalityKey(functionality2, backend2));
ASSERT_EQ(expected_keys, visited_keys);
if (backend1 == backend2 || functionality1 == functionality2) {
// We have two runtime keys, with either the same backend or the same
// per-backend functionalities. E.g. {AutogradCUDA, CUDA} or
// {AutogradCPU, AutogradCUDA} There should be 2 total runtime keys in
// this set.
ASSERT_EQ(2, visited_keys.size());
} else {
// since i and j are different keys, they should not have the same
// functionality and backend
ASSERT_TRUE(backend1 != backend2 && functionality1 != functionality2);
// We have two runtime keys, that have different backends + per-backend
// functionalities. So we should expect the full cross product of
// runtime keys to be in the set. e.g. if i = AutogradCUDA, and j = CPU,
// then combined = {AutogradCUDA, AutogradCPU, CUDA, CPU}
ASSERT_EQ(4, visited_keys.size());
}
}
}
}
TEST(DispatchKeySet, Full) {
DispatchKeySet full(DispatchKeySet::FULL);
for (const auto i : c10::irange(1, num_functionality_keys)) {
auto tid = static_cast<DispatchKey>(i);
ASSERT_TRUE(full.has(tid));
}
ASSERT_FALSE(full.has(DispatchKey::EndOfFunctionalityKeys));
}
TEST(DispatchKeySet, IteratorBasicOps) {
DispatchKeySet empty_set;
DispatchKeySet full_set(DispatchKeySet::FULL);
DispatchKeySet mutated_set = empty_set.add(DispatchKey::CPU);
// Constructor + Comparison
ASSERT_EQ(*empty_set.begin(), DispatchKey::EndOfFunctionalityKeys);
ASSERT_EQ(*empty_set.end(), DispatchKey::EndOfFunctionalityKeys);
ASSERT_EQ(*mutated_set.begin(), DispatchKey::CPU);
ASSERT_TRUE(empty_set.begin() == empty_set.end());
ASSERT_TRUE(full_set.begin() != full_set.end());
// Increment Ops
ASSERT_TRUE(full_set.begin() == full_set.begin()++);
ASSERT_TRUE(full_set.begin() != ++full_set.begin());
}
TEST(DispatchKeySet, getHighestPriorityBackendTypeId) {
// AutogradCPU isn't a backend key so it is ignored
DispatchKeySet dense_cpu({DispatchKey::AutogradCPU, DispatchKey::CPU});
ASSERT_EQ(DispatchKey::CPU, c10::highestPriorityBackendTypeId(dense_cpu));
// Functionalize isn't a backend key so it is ignored
DispatchKeySet sparse_cuda(
{DispatchKey::Functionalize, DispatchKey::SparseCUDA});
ASSERT_EQ(
DispatchKey::SparseCUDA, c10::highestPriorityBackendTypeId(sparse_cuda));
// quantizedCUDA has higher priority than CUDA
DispatchKeySet quantized_cuda(
{DispatchKey::CUDA, DispatchKey::QuantizedCUDA});
ASSERT_EQ(
DispatchKey::QuantizedCUDA,
c10::highestPriorityBackendTypeId(quantized_cuda));
}
TEST(DispatchKeySet, IteratorEmpty) {
DispatchKeySet empty_set;
uint8_t i = 0;
for (auto it = empty_set.begin(); it != empty_set.end(); ++it) {
i++;
}
ASSERT_EQ(i, 0);
}
TEST(DispatchKeySet, IteratorCrossProduct) {
// The iterator should return all runtime keys in the set,
// including the cross product of {backends} x {functionalities}
auto ks =
DispatchKeySet({BackendComponent::CPUBit, BackendComponent::CUDABit}) |
DispatchKeySet(
{DispatchKey::Dense,
DispatchKey::FPGA,
DispatchKey::AutogradFunctionality});
auto iter = ks.begin();
// iterate through dense backends first.
ASSERT_EQ(DispatchKey::CPU, *(iter++));
ASSERT_EQ(DispatchKey::CUDA, *(iter++));
// FPGA doesn't have a backend bit, so it isn't included in the cross product.
ASSERT_EQ(DispatchKey::FPGA, *(iter++));
// iterate through the autograd keys laster.
ASSERT_EQ(DispatchKey::AutogradCPU, *(iter++));
ASSERT_EQ(DispatchKey::AutogradCUDA, *(iter++));
}
TEST(DispatchKeySet, IteratorFull) {
DispatchKeySet full_set(DispatchKeySet::FULL);
std::ptrdiff_t count = std::distance(full_set.begin(), full_set.end());
// Total # of runtime entries includes an entry for DispatchKey::Undefined,
// which is not included when iterating through the DispatchKeySet.
ASSERT_EQ(count, std::ptrdiff_t{num_runtime_entries} - 1);
}
TEST(DispatchKeySet, FailAtEndIterator) {
DispatchKeySet full_set(DispatchKeySet::FULL);
uint64_t raw_repr = full_set.raw_repr();
// doesn't throw
DispatchKeySet::iterator(&raw_repr, num_backends + num_functionality_keys);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-goto,hicpp-avoid-goto)
EXPECT_THROW(
DispatchKeySet::iterator(
&raw_repr, num_backends + num_functionality_keys + 1),
c10::Error);
}
TEST(DispatchKeySet, TestBackendComponentToString) {
std::unordered_set<std::string> seen_strings;
for (int64_t i = 0;
i <= static_cast<int64_t>(BackendComponent::EndOfBackendKeys);
i++) {
auto k = static_cast<BackendComponent>(i);
auto res = std::string(toString(k));
ASSERT_FALSE(res == "UNKNOWN_BACKEND_BIT");
ASSERT_FALSE(seen_strings.count(res) > 0);
seen_strings.insert(res);
}
}
TEST(DispatchKeySet, TestEndOfRuntimeBackendKeysAccurate) {
DispatchKey k;
#define SETTER(fullname, prefix) k = DispatchKey::EndOf##fullname##Backends;
C10_FORALL_FUNCTIONALITY_KEYS(SETTER)
#undef SETTER
ASSERT_TRUE(k == DispatchKey::EndOfRuntimeBackendKeys);
}
TEST(DispatchKeySet, TestFunctionalityDispatchKeyToString) {
std::unordered_set<std::string> seen_strings;
for (int i = 0; i <= static_cast<int>(DispatchKey::EndOfAliasKeys); i++) {
auto k = static_cast<DispatchKey>(i);
// These synthetic keys never actually get used and don't need
// to be printed
if (k == DispatchKey::EndOfFunctionalityKeys ||
k == DispatchKey::StartOfDenseBackends ||
k == DispatchKey::StartOfQuantizedBackends ||
k == DispatchKey::StartOfSparseBackends ||
k == DispatchKey::StartOfNestedTensorBackends ||
k == DispatchKey::StartOfAutogradFunctionalityBackends)
continue;
auto res = std::string(toString(k));
ASSERT_TRUE(res.find("Unknown") == std::string::npos)
<< i << " (before is " << toString(static_cast<DispatchKey>(i - 1))
<< ")";
ASSERT_TRUE(seen_strings.count(res) == 0);
seen_strings.insert(res);
}
}
|