File: Metaprogramming.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (485 lines) | stat: -rw-r--r-- 15,296 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
#pragma once

#include <c10/util/Array.h>
#include <c10/util/TypeList.h>
#include <array>
#include <functional>
#include <type_traits>

namespace c10 {
namespace guts {

/**
 * Access information about result type or arguments from a function type.
 * Example:
 * using A = function_traits<int (float, double)>::return_type // A == int
 * using A = function_traits<int (float, double)>::parameter_types::tuple_type
 * // A == tuple<float, double>
 */
template <class Func>
struct function_traits {
  static_assert(
      !std::is_same<Func, Func>::value,
      "In function_traits<Func>, Func must be a plain function type.");
};
template <class Result, class... Args>
struct function_traits<Result(Args...)> {
  using func_type = Result(Args...);
  using return_type = Result;
  using parameter_types = typelist::typelist<Args...>;
  static constexpr auto number_of_parameters = sizeof...(Args);
};

/**
 * infer_function_traits: creates a `function_traits` type for a simple
 * function (pointer) or functor (lambda/struct). Currently does not support
 * class methods.
 */

template <typename Functor>
struct infer_function_traits {
  using type = function_traits<
      c10::guts::detail::strip_class_t<decltype(&Functor::operator())>>;
};

template <typename Result, typename... Args>
struct infer_function_traits<Result (*)(Args...)> {
  using type = function_traits<Result(Args...)>;
};

template <typename Result, typename... Args>
struct infer_function_traits<Result(Args...)> {
  using type = function_traits<Result(Args...)>;
};

template <typename T>
using infer_function_traits_t = typename infer_function_traits<T>::type;

/**
 * make_function_traits: creates a `function_traits` type given a Return type
 * and a typelist of Argument types
 *
 * Example:
 * bool f(int, int);
 *
 * infer_function_traits_t<f> == make_function_traits_t<bool,
 * typelist::typelist<int, int>>
 */
template <typename Result, typename ArgList>
struct make_function_traits {
  static_assert(
      false_t<ArgList>::value,
      "In guts::make_function_traits<Result, TypeList>, the ArgList argument must be typelist<...>.");
};

template <typename Result, typename... Args>
struct make_function_traits<Result, typelist::typelist<Args...>> {
  using type = function_traits<Result(Args...)>;
};

template <typename Result, typename ArgList>
using make_function_traits_t =
    typename make_function_traits<Result, ArgList>::type;

/**
 * Use extract_arg_by_filtered_index to return the i-th argument whose
 * type fulfills a given type trait. The argument itself is perfectly forwarded.
 *
 * Example:
 * std::string arg1 = "Hello";
 * std::string arg2 = "World";
 * std::string&& result = extract_arg_by_filtered_index<is_string, 1>(0,
 * arg1, 2.0, std::move(arg2));
 *
 * Warning: Taking the result by rvalue reference can cause segfaults because
 * ownership will not be passed on from the original reference. The original
 * reference dies after the expression and the resulting
 */
namespace detail {
template <
    template <class>
    class Condition,
    size_t index,
    class Enable,
    class... Args>
struct extract_arg_by_filtered_index_;
template <
    template <class>
    class Condition,
    size_t index,
    class Head,
    class... Tail>
struct extract_arg_by_filtered_index_<
    Condition,
    index,
    std::enable_if_t<!Condition<Head>::value>,
    Head,
    Tail...> {
  static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
    return extract_arg_by_filtered_index_<Condition, index, void, Tail...>::
        call(std::forward<Tail>(tail)...);
  }
};
template <
    template <class>
    class Condition,
    size_t index,
    class Head,
    class... Tail>
struct extract_arg_by_filtered_index_<
    Condition,
    index,
    std::enable_if_t<Condition<Head>::value && index != 0>,
    Head,
    Tail...> {
  static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
    return extract_arg_by_filtered_index_<Condition, index - 1, void, Tail...>::
        call(std::forward<Tail>(tail)...);
  }
};
template <template <class> class Condition, size_t index>
struct extract_arg_by_filtered_index_<Condition, index, void> {
  static void call() {
    static_assert(
        index != index, "extract_arg_by_filtered_index out of range.");
  }
};
template <
    template <class>
    class Condition,
    size_t index,
    class Head,
    class... Tail>
struct extract_arg_by_filtered_index_<
    Condition,
    index,
    std::enable_if_t<Condition<Head>::value && index == 0>,
    Head,
    Tail...> {
  static decltype(auto) call(Head&& head, Tail&&... /*tail*/) {
    return std::forward<Head>(head);
  }
};
} // namespace detail
template <template <class> class Condition, size_t index, class... Args>
decltype(auto) extract_arg_by_filtered_index(Args&&... args) {
  static_assert(
      is_type_condition<Condition>::value,
      "In extract_arg_by_filtered_index, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
  return detail::
      extract_arg_by_filtered_index_<Condition, index, void, Args...>::call(
          std::forward<Args>(args)...);
}

/**
 * Use filter_map to map a subset of the arguments to values.
 * The subset is defined by type traits, and will be evaluated at compile time.
 * At runtime, it will just loop over the pre-filtered arguments to create an
 * std::array.
 *
 * Example:
 *  std::array<double, 2> result = filter_map<double, std::is_integral>([] (auto
 * a) {return (double)a;}, 3, "bla", 4);
 *  // result == {3.0, 4.0}
 */
namespace detail {

template <class ResultType, size_t num_results>
struct filter_map_ {
  template <
      template <class>
      class Condition,
      class Mapper,
      class... Args,
      size_t... INDEX>
  static guts::array<ResultType, num_results> call(
      const Mapper& mapper,
      std::index_sequence<INDEX...>,
      Args&&... args) {
    return guts::array<ResultType, num_results>{
        mapper(extract_arg_by_filtered_index<Condition, INDEX>(
            std::forward<Args>(args)...))...};
  }
};
template <class ResultType>
struct filter_map_<ResultType, 0> {
  template <
      template <class>
      class Condition,
      class Mapper,
      class... Args,
      size_t... INDEX>
  static guts::array<ResultType, 0> call(
      const Mapper& /*mapper*/,
      std::index_sequence<INDEX...>,
      Args&&... /*args*/) {
    return guts::array<ResultType, 0>{};
  }
};
} // namespace detail

template <
    class ResultType,
    template <class>
    class Condition,
    class Mapper,
    class... Args>
decltype(auto) filter_map(const Mapper& mapper, Args&&... args) {
  static_assert(
      is_type_condition<Condition>::value,
      "In filter_map<Result, Condition>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");

  static constexpr size_t num_results =
      typelist::count_if<Condition, typelist::typelist<Args...>>::value;
  return detail::filter_map_<ResultType, num_results>::
      template call<Condition, Mapper, Args...>(
          mapper,
          std::make_index_sequence<num_results>(),
          std::forward<Args>(args)...);
}

/**
 * make_offset_index_sequence<Start, N>
 * Like make_index_sequence<N>, but starting from Start instead of 0.
 *
 * Example:
 *  make_offset_index_sequence<10, 3> == std::index_sequence<10, 11, 12>
 */
template <size_t Start, size_t N, size_t... Is>
struct make_offset_index_sequence_impl
    : make_offset_index_sequence_impl<Start, N - 1, Start + N - 1, Is...> {
  static_assert(
      static_cast<int>(Start) >= 0,
      "make_offset_index_sequence: Start < 0");
  static_assert(static_cast<int>(N) >= 0, "make_offset_index_sequence: N < 0");
};

template <size_t Start, size_t... Is>
struct make_offset_index_sequence_impl<Start, 0, Is...> {
  typedef std::index_sequence<Is...> type;
};

template <size_t Start, size_t N>
using make_offset_index_sequence =
    typename make_offset_index_sequence_impl<Start, N>::type;

/**
 * Use tuple_elements to extract a position-indexed subset of elements
 * from the argument tuple into a result tuple.
 *
 * Example:
 *  std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
 *  std::tuple<int, double> result = tuple_elements(t, std::index_sequence<0,
 * 2>());
 */
template <class Tuple, size_t... Is>
constexpr auto tuple_elements(Tuple t, std::index_sequence<Is...>) {
  return std::tuple<std::tuple_element_t<Is, Tuple>...>(std::get<Is>(t)...);
}

/**
 * Use tuple_take to extract the first or last n elements from the argument
 * tuple into a result tuple.
 *
 * Example:
 *  std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
 *  std::tuple<int, const char*> first_two = tuple_take<decltype(t), 2>(t);
 *  std::tuple<const char*, double> last_two = tuple_take<decltype(t), -2>(t);
 */
template <class Tuple, int N, class Enable = void>
struct TupleTake {};

template <class Tuple, int N>
struct TupleTake<Tuple, N, std::enable_if_t<N >= 0, void>> {
  static auto call(Tuple t) {
    constexpr size_t size = std::tuple_size<Tuple>();
    static_assert(N <= size, "tuple_take: N > size");
    return tuple_elements(t, std::make_index_sequence<N>{});
  }
};

template <class Tuple, int N>
    struct TupleTake < Tuple,
    N, std::enable_if_t<N<0, void>> {
  static auto call(Tuple t) {
    constexpr size_t size = std::tuple_size<Tuple>();
    static_assert(-N <= size, "tuple_take: -N > size");
    return tuple_elements(t, make_offset_index_sequence<size + N, -N>{});
  }
};

template <class Tuple, int N>
auto tuple_take(Tuple t) {
  return TupleTake<Tuple, N>::call(t);
}

/**
 * Use tuple_slice to extract a contiguous subtuple from the argument.
 *
 * Example:
 *  std::tuple<int, const char*, double, bool> t = std::make_tuple(0,
 * "HEY", 2.0, false); std::tuple<int, const char*> middle_two =
 * tuple_slice<decltype(t), 1, 2>(t);
 */
template <class Tuple, size_t Start, size_t N>
constexpr auto tuple_slice(Tuple t) {
  constexpr size_t size = std::tuple_size<Tuple>();
  static_assert(Start + N <= size, "tuple_slice: Start + N > size");
  return tuple_elements(t, make_offset_index_sequence<Start, N>{});
}

/**
 * Use tuple_map to run a mapping function over a tuple to get a new tuple.
 *
 * Example 1:
 *   auto result = tuple_map(std::tuple<int32_t, int32_t, int32_t>(3, 4, 5), []
 * (int32_t a) -> int16_t {return a+1;});
 *   // result == std::tuple<int16_t, int16_t, int16_t>(4, 5, 6)
 *
 * Example 2:
 *   struct Mapper {
 *     std::string operator()(int32_t a) const {
 *       return std::to_string(a);
 *     }
 *     int64_t operator()(const std::string& a) const {
 *        return atoi(a.c_str());
 *     }
 *   };
 *   auto result = tuple_map(std::tuple<int32_t, std::string>(3, "4"),
 * Mapper());
 *   // result == std::tuple<std::string, int64_t>("3", 4)
 *
 * Example 3:
 *   struct A final {
 *    int32_t func() {
 *      return 5;
 *    }
 *  };
 *  struct B final {
 *    std::string func() {
 *      return "5";
 *    }
 *  };
 *  auto result = tuple_map(std::make_tuple(A(), B()), [] (auto a) { return
 * a.func(); });
 *  // result == std::tuple<int32_t, std::string>(5, "5");
 */
namespace detail {
template <class Mapper, class... Args, size_t... Indices>
auto tuple_map(
    std::tuple<Args...>&& tuple,
    const Mapper& mapper,
    std::index_sequence<Indices...>) {
  return std::tuple<decltype(mapper(std::forward<Args>(std::get<Indices>(
      tuple))))...>(mapper(std::forward<Args>(std::get<Indices>(tuple)))...);
}
} // namespace detail

template <class Mapper, class... Args>
auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper) {
  return detail::tuple_map(
      std::move(tuple), mapper, std::index_sequence_for<Args...>());
}

/**
 * tuple_concat concatenates several tuples into one.
 */

namespace detail {
// extract_tuple_element_by_index is a helper that takes a list of tuples and
// extracts the i-th element in a flattened view of the tuples. Example:
// extract_tuple_element_by_index<3>(tuple(2,3), tuple(4,5), tuple(6,7)) == 5.

template <
    size_t index,
    class HeadTuple,
    class... TailTuples,
    std::enable_if_t<
        index<std::tuple_size<HeadTuple>::value, int> = 0> decltype(auto)
        extract_tuple_element_by_index(
            HeadTuple&& head_tuple,
            TailTuples&&... /*tail_tuples*/) {
  // TODO if constexpr instead of enable_if
  return std::get<index>(std::forward<HeadTuple>(head_tuple));
}

template <
    size_t index,
    class HeadTuple,
    class... TailTuples,
    std::enable_if_t<index >= std::tuple_size<HeadTuple>::value, int> = 0>
decltype(auto) extract_tuple_element_by_index(
    HeadTuple&& /*head_tuple*/,
    TailTuples&&... tail_tuples) {
  // TODO if constexpr instead of enable_if
  return extract_tuple_element_by_index<
      index - std::tuple_size<HeadTuple>::value,
      TailTuples...>(std::forward<TailTuples>(tail_tuples)...);
}

static_assert(
    std::is_same<
        int&&,
        decltype(extract_tuple_element_by_index<2>(
            std::tuple<int32_t>(2),
            std::tuple<int32_t&&, int32_t>(std::declval<int32_t>(), 3)))>::
        value,
    "extract_tuple_element_by_index should return rvalue references if the tuple contains them. It should not move them into a value");

template <class ConcatenatedTuple, class... Tuples, size_t... ElementIndices>
auto tuple_concat(Tuples&&... tuples, std::index_sequence<ElementIndices...>) {
  return ConcatenatedTuple(extract_tuple_element_by_index<ElementIndices>(
      std::forward<Tuples>(tuples)...)...);
}
} // namespace detail

template <class... Tuples>
auto tuple_concat(Tuples&&... tuples) {
  using flattened_types =
      guts::typelist::concat_t<guts::typelist::from_tuple_t<Tuples>...>;
  using concatenated_tuple = guts::typelist::to_tuple_t<flattened_types>;
  constexpr size_t num_elements = guts::typelist::size<flattened_types>::value;
  return detail::tuple_concat<concatenated_tuple, Tuples...>(
      std::forward<Tuples>(tuples)...,
      std::make_index_sequence<num_elements>());
}

/**
 * Concatenate multiple integer sequences
 * Example:
 *   concat_iseq_t<std::index_sequence<2, 5, 3>, std::index_sequence<4, 2>,
 * std::index_sequence<5>>
 *     == std::index_sequence<2, 5, 3, 4, 2, 5>
 */
template <class... ISeqs>
struct concat_iseq {
  static_assert(
      false_t<ISeqs...>::value,
      "In concat_iseq<T1, ...>, the T arguments each must be std::integer_sequence<...> with the same IntType.");
};
template <>
struct concat_iseq<> {
  using type = std::index_sequence<>;
};
template <class IntType, IntType... Indices>
struct concat_iseq<std::integer_sequence<IntType, Indices...>> {
  using type = std::integer_sequence<IntType, Indices...>;
};
template <
    class IntType,
    IntType... Head1Indices,
    IntType... Head2Indices,
    class... TailISeqs>
struct concat_iseq<
    std::integer_sequence<IntType, Head1Indices...>,
    std::integer_sequence<IntType, Head2Indices...>,
    TailISeqs...> {
  using type = typename concat_iseq<
      std::integer_sequence<IntType, Head1Indices..., Head2Indices...>,
      TailISeqs...>::type;
};
template <class... ISeqs>
using concat_iseq_t = typename concat_iseq<ISeqs...>::type;

} // namespace guts
} // namespace c10