1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
#pragma once
#include <c10/util/Array.h>
#include <c10/util/TypeList.h>
#include <array>
#include <functional>
#include <type_traits>
namespace c10 {
namespace guts {
/**
* Access information about result type or arguments from a function type.
* Example:
* using A = function_traits<int (float, double)>::return_type // A == int
* using A = function_traits<int (float, double)>::parameter_types::tuple_type
* // A == tuple<float, double>
*/
template <class Func>
struct function_traits {
static_assert(
!std::is_same<Func, Func>::value,
"In function_traits<Func>, Func must be a plain function type.");
};
template <class Result, class... Args>
struct function_traits<Result(Args...)> {
using func_type = Result(Args...);
using return_type = Result;
using parameter_types = typelist::typelist<Args...>;
static constexpr auto number_of_parameters = sizeof...(Args);
};
/**
* infer_function_traits: creates a `function_traits` type for a simple
* function (pointer) or functor (lambda/struct). Currently does not support
* class methods.
*/
template <typename Functor>
struct infer_function_traits {
using type = function_traits<
c10::guts::detail::strip_class_t<decltype(&Functor::operator())>>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result (*)(Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename Result, typename... Args>
struct infer_function_traits<Result(Args...)> {
using type = function_traits<Result(Args...)>;
};
template <typename T>
using infer_function_traits_t = typename infer_function_traits<T>::type;
/**
* make_function_traits: creates a `function_traits` type given a Return type
* and a typelist of Argument types
*
* Example:
* bool f(int, int);
*
* infer_function_traits_t<f> == make_function_traits_t<bool,
* typelist::typelist<int, int>>
*/
template <typename Result, typename ArgList>
struct make_function_traits {
static_assert(
false_t<ArgList>::value,
"In guts::make_function_traits<Result, TypeList>, the ArgList argument must be typelist<...>.");
};
template <typename Result, typename... Args>
struct make_function_traits<Result, typelist::typelist<Args...>> {
using type = function_traits<Result(Args...)>;
};
template <typename Result, typename ArgList>
using make_function_traits_t =
typename make_function_traits<Result, ArgList>::type;
/**
* Use extract_arg_by_filtered_index to return the i-th argument whose
* type fulfills a given type trait. The argument itself is perfectly forwarded.
*
* Example:
* std::string arg1 = "Hello";
* std::string arg2 = "World";
* std::string&& result = extract_arg_by_filtered_index<is_string, 1>(0,
* arg1, 2.0, std::move(arg2));
*
* Warning: Taking the result by rvalue reference can cause segfaults because
* ownership will not be passed on from the original reference. The original
* reference dies after the expression and the resulting
*/
namespace detail {
template <
template <class>
class Condition,
size_t index,
class Enable,
class... Args>
struct extract_arg_by_filtered_index_;
template <
template <class>
class Condition,
size_t index,
class Head,
class... Tail>
struct extract_arg_by_filtered_index_<
Condition,
index,
std::enable_if_t<!Condition<Head>::value>,
Head,
Tail...> {
static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
return extract_arg_by_filtered_index_<Condition, index, void, Tail...>::
call(std::forward<Tail>(tail)...);
}
};
template <
template <class>
class Condition,
size_t index,
class Head,
class... Tail>
struct extract_arg_by_filtered_index_<
Condition,
index,
std::enable_if_t<Condition<Head>::value && index != 0>,
Head,
Tail...> {
static decltype(auto) call(Head&& /*head*/, Tail&&... tail) {
return extract_arg_by_filtered_index_<Condition, index - 1, void, Tail...>::
call(std::forward<Tail>(tail)...);
}
};
template <template <class> class Condition, size_t index>
struct extract_arg_by_filtered_index_<Condition, index, void> {
static void call() {
static_assert(
index != index, "extract_arg_by_filtered_index out of range.");
}
};
template <
template <class>
class Condition,
size_t index,
class Head,
class... Tail>
struct extract_arg_by_filtered_index_<
Condition,
index,
std::enable_if_t<Condition<Head>::value && index == 0>,
Head,
Tail...> {
static decltype(auto) call(Head&& head, Tail&&... /*tail*/) {
return std::forward<Head>(head);
}
};
} // namespace detail
template <template <class> class Condition, size_t index, class... Args>
decltype(auto) extract_arg_by_filtered_index(Args&&... args) {
static_assert(
is_type_condition<Condition>::value,
"In extract_arg_by_filtered_index, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
return detail::
extract_arg_by_filtered_index_<Condition, index, void, Args...>::call(
std::forward<Args>(args)...);
}
/**
* Use filter_map to map a subset of the arguments to values.
* The subset is defined by type traits, and will be evaluated at compile time.
* At runtime, it will just loop over the pre-filtered arguments to create an
* std::array.
*
* Example:
* std::array<double, 2> result = filter_map<double, std::is_integral>([] (auto
* a) {return (double)a;}, 3, "bla", 4);
* // result == {3.0, 4.0}
*/
namespace detail {
template <class ResultType, size_t num_results>
struct filter_map_ {
template <
template <class>
class Condition,
class Mapper,
class... Args,
size_t... INDEX>
static guts::array<ResultType, num_results> call(
const Mapper& mapper,
std::index_sequence<INDEX...>,
Args&&... args) {
return guts::array<ResultType, num_results>{
mapper(extract_arg_by_filtered_index<Condition, INDEX>(
std::forward<Args>(args)...))...};
}
};
template <class ResultType>
struct filter_map_<ResultType, 0> {
template <
template <class>
class Condition,
class Mapper,
class... Args,
size_t... INDEX>
static guts::array<ResultType, 0> call(
const Mapper& /*mapper*/,
std::index_sequence<INDEX...>,
Args&&... /*args*/) {
return guts::array<ResultType, 0>{};
}
};
} // namespace detail
template <
class ResultType,
template <class>
class Condition,
class Mapper,
class... Args>
decltype(auto) filter_map(const Mapper& mapper, Args&&... args) {
static_assert(
is_type_condition<Condition>::value,
"In filter_map<Result, Condition>, the Condition argument must be a condition type trait, i.e. have a static constexpr bool ::value member.");
static constexpr size_t num_results =
typelist::count_if<Condition, typelist::typelist<Args...>>::value;
return detail::filter_map_<ResultType, num_results>::
template call<Condition, Mapper, Args...>(
mapper,
std::make_index_sequence<num_results>(),
std::forward<Args>(args)...);
}
/**
* make_offset_index_sequence<Start, N>
* Like make_index_sequence<N>, but starting from Start instead of 0.
*
* Example:
* make_offset_index_sequence<10, 3> == std::index_sequence<10, 11, 12>
*/
template <size_t Start, size_t N, size_t... Is>
struct make_offset_index_sequence_impl
: make_offset_index_sequence_impl<Start, N - 1, Start + N - 1, Is...> {
static_assert(
static_cast<int>(Start) >= 0,
"make_offset_index_sequence: Start < 0");
static_assert(static_cast<int>(N) >= 0, "make_offset_index_sequence: N < 0");
};
template <size_t Start, size_t... Is>
struct make_offset_index_sequence_impl<Start, 0, Is...> {
typedef std::index_sequence<Is...> type;
};
template <size_t Start, size_t N>
using make_offset_index_sequence =
typename make_offset_index_sequence_impl<Start, N>::type;
/**
* Use tuple_elements to extract a position-indexed subset of elements
* from the argument tuple into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, double> result = tuple_elements(t, std::index_sequence<0,
* 2>());
*/
template <class Tuple, size_t... Is>
constexpr auto tuple_elements(Tuple t, std::index_sequence<Is...>) {
return std::tuple<std::tuple_element_t<Is, Tuple>...>(std::get<Is>(t)...);
}
/**
* Use tuple_take to extract the first or last n elements from the argument
* tuple into a result tuple.
*
* Example:
* std::tuple<int, const char*, double> t = std::make_tuple(0, "HEY", 2.0);
* std::tuple<int, const char*> first_two = tuple_take<decltype(t), 2>(t);
* std::tuple<const char*, double> last_two = tuple_take<decltype(t), -2>(t);
*/
template <class Tuple, int N, class Enable = void>
struct TupleTake {};
template <class Tuple, int N>
struct TupleTake<Tuple, N, std::enable_if_t<N >= 0, void>> {
static auto call(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(N <= size, "tuple_take: N > size");
return tuple_elements(t, std::make_index_sequence<N>{});
}
};
template <class Tuple, int N>
struct TupleTake < Tuple,
N, std::enable_if_t<N<0, void>> {
static auto call(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(-N <= size, "tuple_take: -N > size");
return tuple_elements(t, make_offset_index_sequence<size + N, -N>{});
}
};
template <class Tuple, int N>
auto tuple_take(Tuple t) {
return TupleTake<Tuple, N>::call(t);
}
/**
* Use tuple_slice to extract a contiguous subtuple from the argument.
*
* Example:
* std::tuple<int, const char*, double, bool> t = std::make_tuple(0,
* "HEY", 2.0, false); std::tuple<int, const char*> middle_two =
* tuple_slice<decltype(t), 1, 2>(t);
*/
template <class Tuple, size_t Start, size_t N>
constexpr auto tuple_slice(Tuple t) {
constexpr size_t size = std::tuple_size<Tuple>();
static_assert(Start + N <= size, "tuple_slice: Start + N > size");
return tuple_elements(t, make_offset_index_sequence<Start, N>{});
}
/**
* Use tuple_map to run a mapping function over a tuple to get a new tuple.
*
* Example 1:
* auto result = tuple_map(std::tuple<int32_t, int32_t, int32_t>(3, 4, 5), []
* (int32_t a) -> int16_t {return a+1;});
* // result == std::tuple<int16_t, int16_t, int16_t>(4, 5, 6)
*
* Example 2:
* struct Mapper {
* std::string operator()(int32_t a) const {
* return std::to_string(a);
* }
* int64_t operator()(const std::string& a) const {
* return atoi(a.c_str());
* }
* };
* auto result = tuple_map(std::tuple<int32_t, std::string>(3, "4"),
* Mapper());
* // result == std::tuple<std::string, int64_t>("3", 4)
*
* Example 3:
* struct A final {
* int32_t func() {
* return 5;
* }
* };
* struct B final {
* std::string func() {
* return "5";
* }
* };
* auto result = tuple_map(std::make_tuple(A(), B()), [] (auto a) { return
* a.func(); });
* // result == std::tuple<int32_t, std::string>(5, "5");
*/
namespace detail {
template <class Mapper, class... Args, size_t... Indices>
auto tuple_map(
std::tuple<Args...>&& tuple,
const Mapper& mapper,
std::index_sequence<Indices...>) {
return std::tuple<decltype(mapper(std::forward<Args>(std::get<Indices>(
tuple))))...>(mapper(std::forward<Args>(std::get<Indices>(tuple)))...);
}
} // namespace detail
template <class Mapper, class... Args>
auto tuple_map(std::tuple<Args...>&& tuple, const Mapper& mapper) {
return detail::tuple_map(
std::move(tuple), mapper, std::index_sequence_for<Args...>());
}
/**
* tuple_concat concatenates several tuples into one.
*/
namespace detail {
// extract_tuple_element_by_index is a helper that takes a list of tuples and
// extracts the i-th element in a flattened view of the tuples. Example:
// extract_tuple_element_by_index<3>(tuple(2,3), tuple(4,5), tuple(6,7)) == 5.
template <
size_t index,
class HeadTuple,
class... TailTuples,
std::enable_if_t<
index<std::tuple_size<HeadTuple>::value, int> = 0> decltype(auto)
extract_tuple_element_by_index(
HeadTuple&& head_tuple,
TailTuples&&... /*tail_tuples*/) {
// TODO if constexpr instead of enable_if
return std::get<index>(std::forward<HeadTuple>(head_tuple));
}
template <
size_t index,
class HeadTuple,
class... TailTuples,
std::enable_if_t<index >= std::tuple_size<HeadTuple>::value, int> = 0>
decltype(auto) extract_tuple_element_by_index(
HeadTuple&& /*head_tuple*/,
TailTuples&&... tail_tuples) {
// TODO if constexpr instead of enable_if
return extract_tuple_element_by_index<
index - std::tuple_size<HeadTuple>::value,
TailTuples...>(std::forward<TailTuples>(tail_tuples)...);
}
static_assert(
std::is_same<
int&&,
decltype(extract_tuple_element_by_index<2>(
std::tuple<int32_t>(2),
std::tuple<int32_t&&, int32_t>(std::declval<int32_t>(), 3)))>::
value,
"extract_tuple_element_by_index should return rvalue references if the tuple contains them. It should not move them into a value");
template <class ConcatenatedTuple, class... Tuples, size_t... ElementIndices>
auto tuple_concat(Tuples&&... tuples, std::index_sequence<ElementIndices...>) {
return ConcatenatedTuple(extract_tuple_element_by_index<ElementIndices>(
std::forward<Tuples>(tuples)...)...);
}
} // namespace detail
template <class... Tuples>
auto tuple_concat(Tuples&&... tuples) {
using flattened_types =
guts::typelist::concat_t<guts::typelist::from_tuple_t<Tuples>...>;
using concatenated_tuple = guts::typelist::to_tuple_t<flattened_types>;
constexpr size_t num_elements = guts::typelist::size<flattened_types>::value;
return detail::tuple_concat<concatenated_tuple, Tuples...>(
std::forward<Tuples>(tuples)...,
std::make_index_sequence<num_elements>());
}
/**
* Concatenate multiple integer sequences
* Example:
* concat_iseq_t<std::index_sequence<2, 5, 3>, std::index_sequence<4, 2>,
* std::index_sequence<5>>
* == std::index_sequence<2, 5, 3, 4, 2, 5>
*/
template <class... ISeqs>
struct concat_iseq {
static_assert(
false_t<ISeqs...>::value,
"In concat_iseq<T1, ...>, the T arguments each must be std::integer_sequence<...> with the same IntType.");
};
template <>
struct concat_iseq<> {
using type = std::index_sequence<>;
};
template <class IntType, IntType... Indices>
struct concat_iseq<std::integer_sequence<IntType, Indices...>> {
using type = std::integer_sequence<IntType, Indices...>;
};
template <
class IntType,
IntType... Head1Indices,
IntType... Head2Indices,
class... TailISeqs>
struct concat_iseq<
std::integer_sequence<IntType, Head1Indices...>,
std::integer_sequence<IntType, Head2Indices...>,
TailISeqs...> {
using type = typename concat_iseq<
std::integer_sequence<IntType, Head1Indices..., Head2Indices...>,
TailISeqs...>::type;
};
template <class... ISeqs>
using concat_iseq_t = typename concat_iseq<ISeqs...>::type;
} // namespace guts
} // namespace c10
|