1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
// Copyright 2004-present Facebook. All Rights Reserved.
#pragma once
#include <c10/util/ArrayRef.h>
#include <iterator>
#include <numeric>
#include <type_traits>
namespace c10 {
/// Sum of a list of integers; accumulates into the int64_t datatype
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t sum_integers(const C& container) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(
container.begin(), container.end(), static_cast<int64_t>(0));
}
/// Sum of integer elements referred to by iterators; accumulates into the
/// int64_t datatype
template <
typename Iter,
typename std::enable_if<
std::is_integral<
typename std::iterator_traits<Iter>::value_type>::value,
int>::type = 0>
inline int64_t sum_integers(Iter begin, Iter end) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(begin, end, static_cast<int64_t>(0));
}
/// Product of a list of integers; accumulates into the int64_t datatype
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t multiply_integers(const C& container) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(
container.begin(),
container.end(),
static_cast<int64_t>(1),
std::multiplies<int64_t>());
}
/// Product of integer elements referred to by iterators; accumulates into the
/// int64_t datatype
template <
typename Iter,
typename std::enable_if<
std::is_integral<
typename std::iterator_traits<Iter>::value_type>::value,
int>::type = 0>
inline int64_t multiply_integers(Iter begin, Iter end) {
// std::accumulate infers return type from `init` type, so if the `init` type
// is not large enough to hold the result, computation can overflow. We use
// `int64_t` here to avoid this.
return std::accumulate(
begin, end, static_cast<int64_t>(1), std::multiplies<int64_t>());
}
/// Return product of all dimensions starting from k
/// Returns 1 if k>=dims.size()
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t numelements_from_dim(const int k, const C& dims) {
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(k >= 0);
if (k > static_cast<int>(dims.size())) {
return 1;
} else {
auto cbegin = dims.cbegin();
std::advance(cbegin, k);
return multiply_integers(cbegin, dims.cend());
}
}
/// Product of all dims up to k (not including dims[k])
/// Throws an error if k>dims.size()
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t numelements_to_dim(const int k, const C& dims) {
TORCH_INTERNAL_ASSERT(0 <= k);
TORCH_INTERNAL_ASSERT((unsigned)k <= dims.size());
auto cend = dims.cbegin();
std::advance(cend, k);
return multiply_integers(dims.cbegin(), cend);
}
/// Product of all dims between k and l (including dims[k] and excluding
/// dims[l]) k and l may be supplied in either order
template <
typename C,
typename std::enable_if<
std::is_integral<typename C::value_type>::value,
int>::type = 0>
inline int64_t numelements_between_dim(int k, int l, const C& dims) {
TORCH_INTERNAL_ASSERT(0 <= k);
TORCH_INTERNAL_ASSERT(0 <= l);
if (k > l) {
std::swap(k, l);
}
TORCH_INTERNAL_ASSERT((unsigned)l < dims.size());
auto cbegin = dims.cbegin();
auto cend = dims.cbegin();
std::advance(cbegin, k);
std::advance(cend, l);
return multiply_integers(cbegin, cend);
}
} // namespace c10
|