1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
#pragma once
#include <functional>
#include <iomanip>
#include <sstream>
#include <vector>
#include <c10/util/ArrayRef.h>
#include <c10/util/complex.h>
namespace c10 {
// NOTE: hash_combine and SHA1 hashing is based on implementation from Boost
//
// Boost Software License - Version 1.0 - August 17th, 2003
//
// Permission is hereby granted, free of charge, to any person or organization
// obtaining a copy of the software and accompanying documentation covered by
// this license (the "Software") to use, reproduce, display, distribute,
// execute, and transmit the Software, and to prepare derivative works of the
// Software, and to permit third-parties to whom the Software is furnished to
// do so, all subject to the following:
//
// The copyright notices in the Software and this entire statement, including
// the above license grant, this restriction and the following disclaimer,
// must be included in all copies of the Software, in whole or in part, and
// all derivative works of the Software, unless such copies or derivative
// works are solely in the form of machine-executable object code generated by
// a source language processor.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
// SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
// FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
inline size_t hash_combine(size_t seed, size_t value) {
return seed ^ (value + 0x9e3779b9 + (seed << 6u) + (seed >> 2u));
}
// Creates the SHA1 hash of a string. A 160-bit hash.
// Based on the implementation in Boost (see notice above).
// Note that SHA1 hashes are no longer considered cryptographically
// secure, but are the standard hash for generating unique ids.
// Usage:
// // Let 'code' be a std::string
// c10::sha1 sha1_hash{code};
// const auto hash_code = sha1_hash.str();
// TODO: Compare vs OpenSSL and/or CryptoPP implementations
struct sha1 {
typedef unsigned int(digest_type)[5];
sha1(const std::string& s = "") {
if (!s.empty()) {
reset();
process_bytes(s.c_str(), s.size());
}
}
void reset() {
h_[0] = 0x67452301;
h_[1] = 0xEFCDAB89;
h_[2] = 0x98BADCFE;
h_[3] = 0x10325476;
h_[4] = 0xC3D2E1F0;
block_byte_index_ = 0;
bit_count_low = 0;
bit_count_high = 0;
}
std::string str() {
unsigned int digest[5];
get_digest(digest);
std::ostringstream buf;
for (int i = 0; i < 5; ++i) {
buf << std::hex << std::setfill('0') << std::setw(8) << digest[i];
}
return buf.str();
}
private:
unsigned int left_rotate(unsigned int x, std::size_t n) {
return (x << n) ^ (x >> (32 - n));
}
void process_block_impl() {
unsigned int w[80];
for (std::size_t i = 0; i < 16; ++i) {
w[i] = (block_[i * 4 + 0] << 24);
w[i] |= (block_[i * 4 + 1] << 16);
w[i] |= (block_[i * 4 + 2] << 8);
w[i] |= (block_[i * 4 + 3]);
}
for (std::size_t i = 16; i < 80; ++i) {
w[i] = left_rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1);
}
unsigned int a = h_[0];
unsigned int b = h_[1];
unsigned int c = h_[2];
unsigned int d = h_[3];
unsigned int e = h_[4];
for (std::size_t i = 0; i < 80; ++i) {
unsigned int f;
unsigned int k;
if (i < 20) {
f = (b & c) | (~b & d);
k = 0x5A827999;
} else if (i < 40) {
f = b ^ c ^ d;
k = 0x6ED9EBA1;
} else if (i < 60) {
f = (b & c) | (b & d) | (c & d);
k = 0x8F1BBCDC;
} else {
f = b ^ c ^ d;
k = 0xCA62C1D6;
}
unsigned temp = left_rotate(a, 5) + f + e + k + w[i];
e = d;
d = c;
c = left_rotate(b, 30);
b = a;
a = temp;
}
h_[0] += a;
h_[1] += b;
h_[2] += c;
h_[3] += d;
h_[4] += e;
}
void process_byte_impl(unsigned char byte) {
block_[block_byte_index_++] = byte;
if (block_byte_index_ == 64) {
block_byte_index_ = 0;
process_block_impl();
}
}
void process_byte(unsigned char byte) {
process_byte_impl(byte);
// size_t max value = 0xFFFFFFFF
// if (bit_count_low + 8 >= 0x100000000) { // would overflow
// if (bit_count_low >= 0x100000000-8) {
if (bit_count_low < 0xFFFFFFF8) {
bit_count_low += 8;
} else {
bit_count_low = 0;
if (bit_count_high <= 0xFFFFFFFE) {
++bit_count_high;
} else {
TORCH_CHECK(false, "sha1 too many bytes");
}
}
}
void process_block(void const* bytes_begin, void const* bytes_end) {
unsigned char const* begin = static_cast<unsigned char const*>(bytes_begin);
unsigned char const* end = static_cast<unsigned char const*>(bytes_end);
for (; begin != end; ++begin) {
process_byte(*begin);
}
}
void process_bytes(void const* buffer, std::size_t byte_count) {
unsigned char const* b = static_cast<unsigned char const*>(buffer);
process_block(b, b + byte_count);
}
void get_digest(digest_type& digest) {
// append the bit '1' to the message
process_byte_impl(0x80);
// append k bits '0', where k is the minimum number >= 0
// such that the resulting message length is congruent to 56 (mod 64)
// check if there is enough space for padding and bit_count
if (block_byte_index_ > 56) {
// finish this block
while (block_byte_index_ != 0) {
process_byte_impl(0);
}
// one more block
while (block_byte_index_ < 56) {
process_byte_impl(0);
}
} else {
while (block_byte_index_ < 56) {
process_byte_impl(0);
}
}
// append length of message (before pre-processing)
// as a 64-bit big-endian integer
process_byte_impl(
static_cast<unsigned char>((bit_count_high >> 24) & 0xFF));
process_byte_impl(
static_cast<unsigned char>((bit_count_high >> 16) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_high >> 8) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_high)&0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low >> 24) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low >> 16) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low >> 8) & 0xFF));
process_byte_impl(static_cast<unsigned char>((bit_count_low)&0xFF));
// get final digest
digest[0] = h_[0];
digest[1] = h_[1];
digest[2] = h_[2];
digest[3] = h_[3];
digest[4] = h_[4];
}
unsigned int h_[5];
unsigned char block_[64];
std::size_t block_byte_index_;
std::size_t bit_count_low;
std::size_t bit_count_high;
};
////////////////////////////////////////////////////////////////////////////////
// c10::hash implementation
////////////////////////////////////////////////////////////////////////////////
namespace _hash_detail {
// Use template argument deduction to shorten calls to c10::hash
template <typename T>
size_t simple_get_hash(const T& o);
template <typename T, typename V>
using type_if_not_enum =
typename std::enable_if<!std::is_enum<T>::value, V>::type;
// Use SFINAE to dispatch to std::hash if possible, cast enum types to int
// automatically, and fall back to T::hash otherwise. NOTE: C++14 added support
// for hashing enum types to the standard, and some compilers implement it even
// when C++14 flags aren't specified. This is why we have to disable this
// overload if T is an enum type (and use the one below in this case).
template <typename T>
auto dispatch_hash(const T& o)
-> decltype(std::hash<T>()(o), type_if_not_enum<T, size_t>()) {
return std::hash<T>()(o);
}
template <typename T>
typename std::enable_if<std::is_enum<T>::value, size_t>::type dispatch_hash(
const T& o) {
using R = typename std::underlying_type<T>::type;
return std::hash<R>()(static_cast<R>(o));
}
template <typename T>
auto dispatch_hash(const T& o) -> decltype(T::hash(o), size_t()) {
return T::hash(o);
}
} // namespace _hash_detail
// Hasher struct
template <typename T>
struct hash {
size_t operator()(const T& o) const {
return _hash_detail::dispatch_hash(o);
};
};
// Specialization for std::tuple
template <typename... Types>
struct hash<std::tuple<Types...>> {
template <size_t idx, typename... Ts>
struct tuple_hash {
size_t operator()(const std::tuple<Ts...>& t) const {
return hash_combine(
_hash_detail::simple_get_hash(std::get<idx>(t)),
tuple_hash<idx - 1, Ts...>()(t));
}
};
template <typename... Ts>
struct tuple_hash<0, Ts...> {
size_t operator()(const std::tuple<Ts...>& t) const {
return _hash_detail::simple_get_hash(std::get<0>(t));
}
};
size_t operator()(const std::tuple<Types...>& t) const {
return tuple_hash<sizeof...(Types) - 1, Types...>()(t);
}
};
template <typename T1, typename T2>
struct hash<std::pair<T1, T2>> {
size_t operator()(const std::pair<T1, T2>& pair) const {
std::tuple<T1, T2> tuple = std::make_tuple(pair.first, pair.second);
return _hash_detail::simple_get_hash(tuple);
}
};
template <typename T>
struct hash<c10::ArrayRef<T>> {
size_t operator()(c10::ArrayRef<T> v) const {
size_t seed = 0;
for (const auto& elem : v) {
seed = hash_combine(seed, _hash_detail::simple_get_hash(elem));
}
return seed;
}
};
// Specialization for std::vector
template <typename T>
struct hash<std::vector<T>> {
size_t operator()(const std::vector<T>& v) const {
return hash<c10::ArrayRef<T>>()(v);
}
};
namespace _hash_detail {
template <typename T>
size_t simple_get_hash(const T& o) {
return c10::hash<T>()(o);
}
} // namespace _hash_detail
// Use this function to actually hash multiple things in one line.
// Dispatches to c10::hash, so it can hash containers.
// Example:
//
// static size_t hash(const MyStruct& s) {
// return get_hash(s.member1, s.member2, s.member3);
// }
template <typename... Types>
size_t get_hash(const Types&... args) {
return c10::hash<decltype(std::tie(args...))>()(std::tie(args...));
}
// Specialization for c10::complex
template <typename T>
struct hash<c10::complex<T>> {
size_t operator()(const c10::complex<T>& c) const {
return get_hash(c.real(), c.imag());
}
};
} // namespace c10
|