File: intrusive_ptr.h

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (1050 lines) | stat: -rw-r--r-- 37,255 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
#pragma once

#include <c10/util/C++17.h>
#include <c10/util/Exception.h>
#include <c10/util/ExclusivelyOwned.h>
#include <c10/util/MaybeOwned.h>
#include <atomic>
#include <climits>
#include <memory>
#include <stdexcept>

namespace pybind11 {
template <typename, typename...>
class class_;
}

namespace c10 {
class intrusive_ptr_target;
namespace raw {
namespace weak_intrusive_ptr {
inline void incref(intrusive_ptr_target* self);
}
namespace intrusive_ptr {
inline void incref(intrusive_ptr_target* self);
}

// constructor tag used by intrusive_ptr constructors
struct DontIncreaseRefcount {};
} // namespace raw
/**
 * intrusive_ptr<T> is an alternative to shared_ptr<T> that has better
 * performance because it does the refcounting intrusively
 * (i.e. in a member of the object itself).
 * Your class T needs to inherit from intrusive_ptr_target to allow it to be
 * used in an intrusive_ptr<T>. Your class's constructor should not allow
 *`this` to escape to other threads or create an intrusive_ptr from `this`.
 */

// Note [Stack allocated intrusive_ptr_target safety]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// A well known problem with std::enable_shared_from_this is that it
// allows you to create a std::shared_ptr from a stack allocated object,
// which is totally bogus because the object will die once you return
// from the stack.  In intrusive_ptr, we can detect that this has occurred,
// because we set the refcount/weakcount of objects which inherit from
// intrusive_ptr_target to zero, *unless* we can prove that the object
// was dynamically allocated (e.g., via make_intrusive).
//
// Thus, whenever you transmute a T* into a intrusive_ptr<T>, we check
// and make sure that the refcount isn't zero (or, a more subtle
// test for weak_intrusive_ptr<T>, for which the refcount may validly
// be zero, but the weak refcount better not be zero), because that
// tells us if the object was allocated by us.  If it wasn't, no
// intrusive_ptr for you!

class C10_API intrusive_ptr_target {
  // Note [Weak references for intrusive refcounting]
  // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  // Here's the scheme:
  //
  //  - refcount == number of strong references to the object
  //    weakcount == number of weak references to the object,
  //      plus one more if refcount > 0
  //    An invariant: refcount > 0  =>  weakcount > 0
  //
  //  - c10::StorageImpl stays live as long as there are any strong
  //    or weak pointers to it (weakcount > 0, since strong
  //    references count as a +1 to weakcount)
  //
  //  - finalizers are called and data_ptr is deallocated when refcount == 0
  //
  //  - Once refcount == 0, it can never again be > 0 (the transition
  //    from > 0 to == 0 is monotonic)
  //
  //  - When you access c10::StorageImpl via a weak pointer, you must
  //    atomically increment the use count, if it is greater than 0.
  //    If it is not, you must report that the storage is dead.
  //
  mutable std::atomic<size_t> refcount_;
  mutable std::atomic<size_t> weakcount_;

  template <typename T, typename NullType>
  friend class intrusive_ptr;
  friend inline void raw::intrusive_ptr::incref(intrusive_ptr_target* self);

  template <typename T, typename NullType>
  friend class weak_intrusive_ptr;
  friend inline void raw::weak_intrusive_ptr::incref(
      intrusive_ptr_target* self);

  template <typename T>
  friend struct ExclusivelyOwnedTensorTraits;

 protected:
  // protected destructor. We never want to destruct intrusive_ptr_target*
  // directly.
  virtual ~intrusive_ptr_target() {
// Disable -Wterminate and -Wexceptions so we're allowed to use assertions
// (i.e. throw exceptions) in a destructor.
// We also have to disable -Wunknown-warning-option and -Wpragmas, because
// some other compilers don't know about -Wterminate or -Wexceptions and
// will show a warning about unknown warning options otherwise.
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning( \
    disable : 4297) // function assumed not to throw an exception but does
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wunknown-warning-option"
#pragma GCC diagnostic ignored "-Wterminate"
#pragma GCC diagnostic ignored "-Wexceptions"
#endif
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
        // Second condition is there to accommodate
        // unsafe_adapt_non_heap_allocated: since we are doing our own
        // deallocation in that case, it is correct for each
        // expected_decref to have happened (some user code tried to
        // decref and thus free the object, but it didn't happen right
        // away) or not (no user code tried to free the object, and
        // now it's getting destroyed through whatever mechanism the
        // caller of unsafe_adapt_non_heap_allocated wanted to
        // use). We choose our reference count such that the count
        // will not dip below INT_MAX regardless.
        refcount_.load() == 0 || refcount_.load() >= INT_MAX,
        "Tried to destruct an intrusive_ptr_target that still has intrusive_ptr to it; refcount was ",
        refcount_.load());
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
        // See ~intrusive_ptr for optimization that will frequently result in 1
        // at destruction time.
        weakcount_.load() == 1 || weakcount_.load() == 0 ||
            weakcount_.load() == INT_MAX - 1 || weakcount_.load() == INT_MAX,
        "Tried to destruct an intrusive_ptr_target that still has weak_intrusive_ptr to it");
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#else
#pragma GCC diagnostic pop
#endif
  }

  constexpr intrusive_ptr_target() noexcept : refcount_(0), weakcount_(0) {}

  // intrusive_ptr_target supports copy and move: but refcount and weakcount
  // don't participate (since they are intrinsic properties of the memory
  // location)
  intrusive_ptr_target(intrusive_ptr_target&& /*other*/) noexcept
      : intrusive_ptr_target() {}

  intrusive_ptr_target& operator=(intrusive_ptr_target&& /*other*/) noexcept {
    return *this;
  }

  intrusive_ptr_target(const intrusive_ptr_target& /*other*/) noexcept
      : intrusive_ptr_target() {}

  intrusive_ptr_target& operator=(
      const intrusive_ptr_target& /*other*/) noexcept {
    return *this;
  }

 private:
  /**
   * This is called when refcount reaches zero.
   * You can override this to release expensive resources.
   * There might still be weak references, so your object might not get
   * destructed yet, but you can assume the object isn't used anymore,
   * i.e. no more calls to methods or accesses to members (we just can't
   * destruct it yet because we need the weakcount accessible).
   *
   * If there are no weak references (i.e. your class is about to be
   * destructed), this function WILL NOT be called.
   */
  virtual void release_resources() {}
};

namespace detail {
template <class TTarget>
struct intrusive_target_default_null_type final {
  static constexpr TTarget* singleton() noexcept {
    return nullptr;
  }
};

template <class TTarget, class ToNullType, class FromNullType>
TTarget* assign_ptr_(TTarget* rhs) {
  if (FromNullType::singleton() == rhs) {
    return ToNullType::singleton();
  } else {
    return rhs;
  }
}

// Increment needs to be acquire-release to make use_count() and
// unique() reliable.
inline size_t atomic_refcount_increment(std::atomic<size_t>& refcount) {
  return refcount.fetch_add(1, std::memory_order_acq_rel) + 1;
}

// weak_use_count() is only used for testing, so we don't need it to
// be reliable. Relaxed should be fine.
inline size_t atomic_weakcount_increment(std::atomic<size_t>& weakcount) {
  return weakcount.fetch_add(1, std::memory_order_relaxed) + 1;
}

// Both decrements need to be acquire-release for correctness. See
// e.g. std::shared_ptr implementation.
inline size_t atomic_refcount_decrement(std::atomic<size_t>& refcount) {
  return refcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}

inline size_t atomic_weakcount_decrement(std::atomic<size_t>& weakcount) {
  return weakcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}

} // namespace detail

template <class TTarget, class NullType>
class weak_intrusive_ptr;

template <
    class TTarget,
    class NullType = detail::intrusive_target_default_null_type<TTarget>>
class intrusive_ptr final {
 private:
//  the following static assert would be nice to have but it requires
//  the target class T to be fully defined when intrusive_ptr<T> is instantiated
//  this is a problem for classes that contain pointers to themselves
//  static_assert(
//      std::is_base_of<intrusive_ptr_target, TTarget>::value,
//      "intrusive_ptr can only be used for classes that inherit from
//      intrusive_ptr_target.");
#ifndef _WIN32
  // This static_assert triggers on MSVC
  //  error C2131: expression did not evaluate to a constant
  static_assert(
      NullType::singleton() == NullType::singleton(),
      "NullType must have a constexpr singleton() method");
#endif
  static_assert(
      std::is_base_of<
          TTarget,
          typename std::remove_pointer<decltype(NullType::singleton())>::type>::
          value,
      "NullType::singleton() must return a element_type* pointer");

  TTarget* target_;

  template <typename T>
  friend struct ExclusivelyOwnedTensorTraits;
  template <class TTarget2, class NullType2>
  friend class intrusive_ptr;
  friend class weak_intrusive_ptr<TTarget, NullType>;

  // Make pybind11::class_ be a friend class of intrusive_ptr, so that custom
  // smart holder in pybind11 could access the private constructor of
  // intrusive_ptr(T*) which took the ownership of the object. This is required
  // by customer holder macro PYBIND11_DECLARE_HOLDER_TYPE, where it uses
  // intrusive_ptr(TTarget*) to initialize and take ownership of the object. For
  // details, see
  // https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
  template <typename, typename...>
  friend class pybind11::class_;

  void retain_() {
    if (target_ != NullType::singleton()) {
      size_t new_refcount =
          detail::atomic_refcount_increment(target_->refcount_);
      TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
          new_refcount != 1,
          "intrusive_ptr: Cannot increase refcount after it reached zero.");
    }
  }

  void reset_() noexcept {
    if (target_ != NullType::singleton() &&
        detail::atomic_refcount_decrement(target_->refcount_) == 0) {
      // See comment above about weakcount. As long as refcount>0,
      // weakcount is one larger than the actual number of weak references.
      // So we need to decrement it here.
      bool should_delete =
          target_->weakcount_.load(std::memory_order_acquire) == 1;
      if (!should_delete) {
        // justification for const_cast: release_resources is basically a
        // destructor and a destructor always mutates the object, even for const
        // objects. NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
        const_cast<std::remove_const_t<TTarget>*>(target_)->release_resources();
        should_delete =
            detail::atomic_weakcount_decrement(target_->weakcount_) == 0;
      }
      if (should_delete) {
        delete target_;
      }
    }
  }

  // raw pointer constructors are not public because we shouldn't make
  // intrusive_ptr out of raw pointers except from inside the make_intrusive(),
  // reclaim() and weak_intrusive_ptr::lock() implementations.

  // This constructor will increase the ref counter for you.
  // This constructor will be used by the make_intrusive(), and also pybind11,
  // which wrap the intrusive_ptr holder around the raw pointer and incref
  // correspondingly (pybind11 requires raw pointer constructor to incref by
  // default).
  explicit intrusive_ptr(TTarget* target)
      : intrusive_ptr(target, raw::DontIncreaseRefcount{}) {
    if (target_ != NullType::singleton()) {
      // We just created result.target_, so we know no other thread has
      // access to it, so we know we needn't care about memory ordering.
      // (On x86_64, a store with memory_order_relaxed generates a plain old
      // `mov`, whereas an atomic increment does a lock-prefixed `add`, which is
      // much more expensive: https://godbolt.org/z/eKPzj8.)
      TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
          target_->refcount_ == 0 && target_->weakcount_ == 0,
          "intrusive_ptr: Newly-created target had non-zero refcounts. Does its "
          "constructor do something strange like incref or create an "
          "intrusive_ptr from `this`?");
      target_->refcount_.store(1, std::memory_order_relaxed);
      target_->weakcount_.store(1, std::memory_order_relaxed);
    }
  }

 public:
  using element_type = TTarget;

  intrusive_ptr() noexcept
      : intrusive_ptr(NullType::singleton(), raw::DontIncreaseRefcount{}) {}

  // This constructor will not increase the ref counter for you.
  // We use the tagged dispatch mechanism to explicitly mark this constructor
  // to not increase the refcount
  explicit intrusive_ptr(TTarget* target, raw::DontIncreaseRefcount) noexcept
      : target_(target) {}

  explicit intrusive_ptr(std::unique_ptr<TTarget> rhs) noexcept
      : intrusive_ptr(rhs.release()) {}

  intrusive_ptr(intrusive_ptr&& rhs) noexcept : target_(rhs.target_) {
    rhs.target_ = NullType::singleton();
  }

  template <class From, class FromNullType>
  /* implicit */ intrusive_ptr(intrusive_ptr<From, FromNullType>&& rhs) noexcept
      : target_(
            detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. intrusive_ptr move constructor got pointer of wrong type.");
    rhs.target_ = FromNullType::singleton();
  }

  intrusive_ptr(const intrusive_ptr& rhs) : target_(rhs.target_) {
    retain_();
  }

  template <class From, class FromNullType>
  /* implicit */ intrusive_ptr(const intrusive_ptr<From, FromNullType>& rhs)
      : target_(
            detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. intrusive_ptr copy constructor got pointer of wrong type.");
    retain_();
  }

  ~intrusive_ptr() noexcept {
    reset_();
  }

  intrusive_ptr& operator=(intrusive_ptr&& rhs) & noexcept {
    return operator=<TTarget, NullType>(std::move(rhs));
  }

  template <class From, class FromNullType>
  intrusive_ptr& operator=(intrusive_ptr<From, FromNullType>&& rhs) & noexcept {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. intrusive_ptr move assignment got pointer of wrong type.");
    intrusive_ptr tmp = std::move(rhs);
    swap(tmp);
    return *this;
  }

  intrusive_ptr& operator=(const intrusive_ptr& rhs) & noexcept {
    return operator=<TTarget, NullType>(rhs);
  }

  template <class From, class FromNullType>
  intrusive_ptr& operator=(const intrusive_ptr<From, NullType>& rhs) & {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. intrusive_ptr copy assignment got pointer of wrong type.");
    intrusive_ptr tmp = rhs;
    swap(tmp);
    return *this;
  }

  TTarget* get() const noexcept {
    return target_;
  }

  TTarget& operator*() const noexcept {
    return *target_;
  }

  TTarget* operator->() const noexcept {
    // NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDelete)
    return target_;
  }

  operator bool() const noexcept {
    return target_ != NullType::singleton();
  }

  void reset() noexcept {
    reset_();
    target_ = NullType::singleton();
  }

  void swap(intrusive_ptr& rhs) noexcept {
    TTarget* tmp = target_;
    target_ = rhs.target_;
    rhs.target_ = tmp;
  }

  // We do a lot of null-pointer checks in our code, good to have this be cheap.
  bool defined() const noexcept {
    return target_ != NullType::singleton();
  }

  size_t use_count() const noexcept {
    if (target_ == NullType::singleton()) {
      return 0;
    }
    return target_->refcount_.load(std::memory_order_acquire);
  }

  size_t weak_use_count() const noexcept {
    if (target_ == NullType::singleton()) {
      return 0;
    }
    return target_->weakcount_.load(std::memory_order_acquire);
  }

  bool unique() const noexcept {
    return use_count() == 1;
  }

  /**
   * Returns an owning (!) pointer to the underlying object and makes the
   * intrusive_ptr instance invalid. That means the refcount is not decreased.
   * You *must* put the returned pointer back into a intrusive_ptr using
   * intrusive_ptr::reclaim(ptr) to properly destruct it.
   * This is helpful for C APIs.
   */
  TTarget* release() noexcept {
    // NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
    TTarget* result = target_;
    target_ = NullType::singleton();
    return result;
  }

  /**
   * Takes an owning pointer to TTarget* and creates an intrusive_ptr that takes
   * over ownership. That means the refcount is not increased.
   * This is the counter-part to intrusive_ptr::release() and the pointer
   * passed in *must* have been created using intrusive_ptr::release().
   */
  static intrusive_ptr reclaim(TTarget* owning_ptr) {
    return intrusive_ptr(owning_ptr, raw::DontIncreaseRefcount{});
  }

  /**
   * Takes an owning pointer to TTarget* and creates an intrusive_ptr
   * representing a new reference, i.e. the raw pointer retains
   * ownership.
   */
  static intrusive_ptr reclaim_copy(TTarget* owning_ptr) {
    auto ret = reclaim(owning_ptr);
    ret.retain_();
    return ret;
  }

  /**
   * Allocate a heap object with args and wrap it inside a intrusive_ptr and
   * incref. This is a helper function to let make_intrusive() access private
   * intrusive_ptr constructors.
   */
  template <class... Args>
  static intrusive_ptr make(Args&&... args) {
    return intrusive_ptr(new TTarget(std::forward<Args>(args)...));
  }

  /**
   * Turn a new instance of TTarget (e.g., literally allocated
   * using new TTarget(...) into an intrusive_ptr.  If possible,
   * use intrusive_ptr::make instead which statically guarantees
   * that the allocation was done properly.
   *
   * At the moment, the only reason this method exists is because
   * pybind11 holder types expect to be able to allocate in
   * this way (because pybind11 handles the new allocation itself).
   */
  static intrusive_ptr unsafe_steal_from_new(TTarget* raw_ptr) {
    return intrusive_ptr(raw_ptr);
  }

  /**
   * Turn an instance of TTarget that should not be reference counted
   * (e.g., allocated into an arena with placement new) into an
   * intrusive_ptr. This is gratuitously unsafe and should only be
   * used if you can guarantee that the pointer will not escape and be
   * refcounted as normal.
   *
   * `expected_decrefs` is a debugging parameter: it indicates the
   * number of strong owners the intrusive_ptr_target in question is
   * expected to get. In most use cases, this will likely be 1.
   *
   * The reason this method exists is for manually sharing
   * StorageImpls across Tensors in the static runtime. It needs
   * access to private intrusive_ptr members so that the refcounts can
   * be initialized to custom values.
   */
  static intrusive_ptr unsafe_adapt_non_heap_allocated(
      TTarget* raw_ptr,
      size_t expected_decrefs) {
    intrusive_ptr result(raw_ptr, raw::DontIncreaseRefcount{});
    // INT_MAX is impractically huge for a reference count, while
    // being in no danger of overflowing size_t. We actually only need to
    // initialize the refcount to 2 -- we are just doing an unbalanced
    // incref to prevent the non-heap-allocated target from being
    // freed, and we are optimizing that incref by directly
    // initializing the refcounts rather than doing an expensive
    // atomic increment. The reason to use INT_MAX is to accommodate
    // the debug assertions in ~intrusive_ptr_target.
#ifdef NDEBUG
    expected_decrefs = 0;
#endif
    result.target_->refcount_.store(
        INT_MAX + expected_decrefs, std::memory_order_relaxed);
    result.target_->weakcount_.store(INT_MAX, std::memory_order_relaxed);
    return result;
  }

  /**
   * Turn a **non-owning raw pointer** to an intrusive_ptr.  It is
   * the moral equivalent of enable_shared_from_this on a shared pointer.
   *
   * This method is only valid for objects that are already live.  If
   * you are looking for the moral equivalent of unique_ptr<T>(T*)
   * constructor, see steal_from_new.
   *
   * TODO: https://github.com/pytorch/pytorch/issues/56482
   */
  static intrusive_ptr unsafe_reclaim_from_nonowning(TTarget* raw_ptr) {
    // See Note [Stack allocated intrusive_ptr_target safety]
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
        raw_ptr == NullType::singleton() || raw_ptr->refcount_.load() > 0,
        "intrusive_ptr: Can only reclaim pointers that are owned by someone");
    auto ptr = reclaim(raw_ptr); // doesn't increase refcount
    ptr.retain_();
    return ptr;
  }
};

template <
    class TTarget,
    class NullType = detail::intrusive_target_default_null_type<TTarget>,
    class... Args>
inline intrusive_ptr<TTarget, NullType> make_intrusive(Args&&... args) {
  return intrusive_ptr<TTarget, NullType>::make(std::forward<Args>(args)...);
}

template <class TTarget, class NullType>
inline void swap(
    intrusive_ptr<TTarget, NullType>& lhs,
    intrusive_ptr<TTarget, NullType>& rhs) noexcept {
  lhs.swap(rhs);
}

// To allow intrusive_ptr inside std::map or std::set, we need operator<
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator<(
    const intrusive_ptr<TTarget1, NullType1>& lhs,
    const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return lhs.get() < rhs.get();
}

template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator==(
    const intrusive_ptr<TTarget1, NullType1>& lhs,
    const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return lhs.get() == rhs.get();
}

template <class TTarget1, class NullType1>
inline bool operator==(
    const intrusive_ptr<TTarget1, NullType1>& lhs,
    std::nullptr_t) noexcept {
  return lhs.get() == nullptr;
}

template <class TTarget2, class NullType2>
inline bool operator==(
    std::nullptr_t,
    const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return nullptr == rhs.get();
}

template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator!=(
    const intrusive_ptr<TTarget1, NullType1>& lhs,
    const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return !operator==(lhs, rhs);
}

template <class TTarget1, class NullType1>
inline bool operator!=(
    const intrusive_ptr<TTarget1, NullType1>& lhs,
    std::nullptr_t) noexcept {
  return !operator==(lhs, nullptr);
}

template <class TTarget2, class NullType2>
inline bool operator!=(
    std::nullptr_t,
    const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return !operator==(nullptr, rhs);
}
template <typename T>
struct MaybeOwnedTraits<c10::intrusive_ptr<T>> {
  using owned_type = c10::intrusive_ptr<T>;
  using borrow_type = c10::intrusive_ptr<T>;

  static borrow_type createBorrow(const owned_type& from) {
    return borrow_type::reclaim(from.get());
  }

  static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
    lhs.release();
    lhs = borrow_type::reclaim(rhs.get());
  }

  static void destroyBorrow(borrow_type& toDestroy) {
    toDestroy.release();
  }

  static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
    return borrow;
  }

  static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
    return &borrow;
  }

  static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
    return true;
  }
};

template <
    typename TTarget,
    class NullType = detail::intrusive_target_default_null_type<TTarget>>
class weak_intrusive_ptr final {
 private:
  static_assert(
      std::is_base_of<intrusive_ptr_target, TTarget>::value,
      "intrusive_ptr can only be used for classes that inherit from intrusive_ptr_target.");
#ifndef _WIN32
  // This static_assert triggers on MSVC
  //  error C2131: expression did not evaluate to a constant
  static_assert(
      NullType::singleton() == NullType::singleton(),
      "NullType must have a constexpr singleton() method");
#endif
  static_assert(
      std::is_base_of<
          TTarget,
          typename std::remove_pointer<decltype(NullType::singleton())>::type>::
          value,
      "NullType::singleton() must return a element_type* pointer");

  TTarget* target_;

  template <class TTarget2, class NullType2>
  friend class weak_intrusive_ptr;

  void retain_() {
    if (target_ != NullType::singleton()) {
      size_t new_weakcount =
          detail::atomic_weakcount_increment(target_->weakcount_);
      TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
          new_weakcount != 1,
          "weak_intrusive_ptr: Cannot increase weakcount after it reached zero.");
    }
  }

  void reset_() noexcept {
    if (target_ != NullType::singleton() &&
        detail::atomic_weakcount_decrement(target_->weakcount_) == 0) {
      // NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDelete)
      delete target_;
    }
    target_ = NullType::singleton();
  }

  constexpr explicit weak_intrusive_ptr(TTarget* target) : target_(target) {}

 public:
  using element_type = TTarget;

  explicit weak_intrusive_ptr(const intrusive_ptr<TTarget, NullType>& ptr)
      : weak_intrusive_ptr(ptr.get()) {
    retain_();
  }

  weak_intrusive_ptr(weak_intrusive_ptr&& rhs) noexcept : target_(rhs.target_) {
    rhs.target_ = NullType::singleton();
  }

  template <class From, class FromNullType>
  /* implicit */ weak_intrusive_ptr(
      weak_intrusive_ptr<From, FromNullType>&& rhs) noexcept
      : target_(
            detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. weak_intrusive_ptr move constructor got pointer of wrong type.");
    rhs.target_ = FromNullType::singleton();
  }

  weak_intrusive_ptr(const weak_intrusive_ptr& rhs) : target_(rhs.target_) {
    retain_();
  }

  template <class From, class FromNullType>
  /* implicit */ weak_intrusive_ptr(
      const weak_intrusive_ptr<From, FromNullType>& rhs)
      : target_(
            detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. weak_intrusive_ptr copy constructor got pointer of wrong type.");
    retain_();
  }

  ~weak_intrusive_ptr() noexcept {
    reset_();
  }

  weak_intrusive_ptr& operator=(weak_intrusive_ptr&& rhs) & noexcept {
    return operator=<TTarget, NullType>(std::move(rhs));
  }

  template <class From, class FromNullType>
  weak_intrusive_ptr& operator=(
      weak_intrusive_ptr<From, FromNullType>&& rhs) & noexcept {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. weak_intrusive_ptr move assignment got pointer of wrong type.");
    weak_intrusive_ptr tmp = std::move(rhs);
    swap(tmp);
    return *this;
  }

  weak_intrusive_ptr& operator=(const weak_intrusive_ptr& rhs) & noexcept {
    return operator=<TTarget, NullType>(rhs);
  }

  weak_intrusive_ptr& operator=(
      const intrusive_ptr<TTarget, NullType>& rhs) & noexcept {
    weak_intrusive_ptr tmp(rhs);
    swap(tmp);
    return *this;
  }

  template <class From, class FromNullType>
  weak_intrusive_ptr& operator=(
      const weak_intrusive_ptr<From, NullType>& rhs) & {
    static_assert(
        std::is_convertible<From*, TTarget*>::value,
        "Type mismatch. weak_intrusive_ptr copy assignment got pointer of wrong type.");
    weak_intrusive_ptr tmp = rhs;
    swap(tmp);
    return *this;
  }

  void reset() noexcept {
    reset_();
  }

  void swap(weak_intrusive_ptr& rhs) noexcept {
    TTarget* tmp = target_;
    target_ = rhs.target_;
    rhs.target_ = tmp;
  }

  // NB: This should ONLY be used by the std::hash implementation
  // for weak_intrusive_ptr.  Another way you could do this is
  // friend std::hash<weak_intrusive_ptr>, but this triggers two
  // bugs:
  //
  //  (1) It triggers an nvcc bug, where std::hash in a friend class
  //      declaration gets preprocessed into hash, which then cannot
  //      actually be found.  The error in this case looks like:
  //
  //        error: no template named 'hash'; did you mean 'std::hash'?
  //
  //  (2) On OS X, std::hash is declared as a struct, not a class.
  //      This twings:
  //
  //        error: class 'hash' was previously declared as a struct
  //        [-Werror,-Wmismatched-tags]
  //
  // Both of these are work-aroundable, but on the whole, I decided
  // it would be simpler and easier to make work if we just expose
  // an unsafe getter for target_
  //
  TTarget* _unsafe_get_target() const noexcept {
    return target_;
  }

  size_t use_count() const noexcept {
    if (target_ == NullType::singleton()) {
      return 0;
    }
    return target_->refcount_.load(
        std::memory_order_acquire); // refcount, not weakcount!
  }

  size_t weak_use_count() const noexcept {
    if (target_ == NullType::singleton()) {
      return 0;
    }
    return target_->weakcount_.load(std::memory_order_acquire);
  }

  bool expired() const noexcept {
    return use_count() == 0;
  }

  intrusive_ptr<TTarget, NullType> lock() const noexcept {
    if (expired()) {
      return intrusive_ptr<TTarget, NullType>();
    } else {
      auto refcount = target_->refcount_.load(std::memory_order_seq_cst);
      do {
        if (refcount == 0) {
          // Object already destructed, no strong references left anymore.
          // Return nullptr.
          return intrusive_ptr<TTarget, NullType>();
        }
      } while (
          !target_->refcount_.compare_exchange_weak(refcount, refcount + 1));
      return intrusive_ptr<TTarget, NullType>(
          target_, raw::DontIncreaseRefcount{});
    }
  }

  /**
   * Returns an owning (but still only weakly referenced) pointer to the
   * underlying object and makes the weak_intrusive_ptr instance invalid.
   * That means the weakcount is not decreased.
   * You *must* put the returned pointer back into a weak_intrusive_ptr using
   * weak_intrusive_ptr::reclaim(ptr) to properly destruct it.
   * This is helpful for C APIs.
   */
  TTarget* release() noexcept {
    TTarget* result = target_;
    target_ = NullType::singleton();
    return result;
  }

  /**
   * Takes an owning (but must be weakly referenced) pointer to TTarget* and
   * creates a weak_intrusive_ptr that takes over ownership.
   * This means that the weakcount is not increased.
   * This is the counter-part to weak_intrusive_ptr::release() and the pointer
   * passed in *must* have been created using weak_intrusive_ptr::release().
   */
  static weak_intrusive_ptr reclaim(TTarget* owning_weak_ptr) {
    // See Note [Stack allocated intrusive_ptr_target safety]
    // if refcount > 0, weakcount must be >1 for weak references to exist.
    // see weak counting explanation at top of this file.
    // if refcount == 0, weakcount only must be >0.
    TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
        owning_weak_ptr == NullType::singleton() ||
            owning_weak_ptr->weakcount_.load() > 1 ||
            (owning_weak_ptr->refcount_.load() == 0 &&
             owning_weak_ptr->weakcount_.load() > 0),
        "weak_intrusive_ptr: Can only weak_intrusive_ptr::reclaim() owning pointers that were created using weak_intrusive_ptr::release().");
    return weak_intrusive_ptr(owning_weak_ptr);
  }

  /**
   * Takes a pointer to TTarget* (may be weak or strong) and creates a
   * new weak_intrusive_ptr representing a new weak reference, i.e.
   * the raw pointer retains ownership.
   */
  static weak_intrusive_ptr reclaim_copy(TTarget* owning_ptr) {
    auto ret = reclaim(owning_ptr);
    ret.retain_();
    return ret;
  }

  template <class TTarget1, class NullType1, class TTarget2, class NullType2>
  friend bool operator<(
      const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
      const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept;
  template <class TTarget1, class NullType1, class TTarget2, class NullType2>
  friend bool operator==(
      const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
      const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept;
};

template <class TTarget, class NullType>
inline void swap(
    weak_intrusive_ptr<TTarget, NullType>& lhs,
    weak_intrusive_ptr<TTarget, NullType>& rhs) noexcept {
  lhs.swap(rhs);
}

// To allow weak_intrusive_ptr inside std::map or std::set, we need operator<
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator<(
    const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
    const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return lhs.target_ < rhs.target_;
}

template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator==(
    const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
    const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return lhs.target_ == rhs.target_;
}

template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator!=(
    const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
    const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
  return !operator==(lhs, rhs);
}

// Alias for documentary purposes, to more easily distinguish
// weak raw intrusive pointers from intrusive pointers.
using weak_intrusive_ptr_target = intrusive_ptr_target;

// This namespace provides some methods for working with
// raw pointers that subclass intrusive_ptr_target.  They are not provided
// as methods on intrusive_ptr_target, because ideally you would not need these
// methods at all (use smart pointers), but if you are dealing with legacy code
// that still needs to pass around raw pointers, you may find these quite
// useful.
//
// An important usage note: some functions are only valid if you have a
// strong raw pointer to the object, while others are only valid if you
// have a weak raw pointer to the object.  ONLY call intrusive_ptr namespace
// functions on strong pointers, and weak_intrusive_ptr namespace functions
// on weak pointers.  If you mix it up, you may get an assert failure.
namespace raw {

namespace intrusive_ptr {

// WARNING: Unlike the reclaim() API, it is NOT valid to pass
// NullType::singleton to this function
inline void incref(intrusive_ptr_target* self) {
  if (self) {
    detail::atomic_refcount_increment(self->refcount_);
  }
}

// WARNING: Unlike the reclaim() API, it is NOT valid to pass
// NullType::singleton to this function
inline void decref(intrusive_ptr_target* self) {
  // Let it die
  c10::intrusive_ptr<intrusive_ptr_target>::reclaim(self);
  // NB: Caller still has 'self' pointer, but it's now invalid.
  // If you want more safety, used the actual c10::intrusive_ptr class
}

template <typename T>
inline T* make_weak(T* self) {
  // NB: 'this' is a strong pointer, but we return a weak pointer
  auto ptr = c10::intrusive_ptr<T>::reclaim(self);
  c10::weak_intrusive_ptr<T> wptr(ptr);
  ptr.release();
  return wptr.release();
}

inline size_t use_count(intrusive_ptr_target* self) {
  auto ptr = c10::intrusive_ptr<intrusive_ptr_target>::reclaim(self);
  auto r = ptr.use_count();
  ptr.release();
  return r;
}

} // namespace intrusive_ptr

namespace weak_intrusive_ptr {

inline void incref(weak_intrusive_ptr_target* self) {
  detail::atomic_weakcount_increment(self->weakcount_);
}

inline void decref(weak_intrusive_ptr_target* self) {
  // Let it die
  c10::weak_intrusive_ptr<intrusive_ptr_target>::reclaim(self);
  // NB: You still "have" the 'self' pointer, but it's now invalid.
  // If you want more safety, used the actual c10::weak_intrusive_ptr class
}

template <typename T>
inline T* lock(T* self) {
  auto wptr = c10::weak_intrusive_ptr<T>::reclaim(self);
  auto ptr = wptr.lock();
  wptr.release();
  return ptr.release();
}

// This gives the STRONG refcount of a WEAK pointer
inline size_t use_count(weak_intrusive_ptr_target* self) {
  auto wptr = c10::weak_intrusive_ptr<intrusive_ptr_target>::reclaim(self);
  auto r = wptr.use_count();
  wptr.release();
  return r;
}

} // namespace weak_intrusive_ptr

} // namespace raw

} // namespace c10

namespace std {
// To allow intrusive_ptr and weak_intrusive_ptr inside std::unordered_map or
// std::unordered_set, we need std::hash
template <class TTarget, class NullType>
struct hash<c10::intrusive_ptr<TTarget, NullType>> {
  size_t operator()(const c10::intrusive_ptr<TTarget, NullType>& x) const {
    return std::hash<TTarget*>()(x.get());
  }
};
template <class TTarget, class NullType>
struct hash<c10::weak_intrusive_ptr<TTarget, NullType>> {
  size_t operator()(const c10::weak_intrusive_ptr<TTarget, NullType>& x) const {
    return std::hash<TTarget*>()(x._unsafe_get_target());
  }
};
} // namespace std