1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
|
#pragma once
#include <c10/util/C++17.h>
#include <c10/util/Exception.h>
#include <c10/util/ExclusivelyOwned.h>
#include <c10/util/MaybeOwned.h>
#include <atomic>
#include <climits>
#include <memory>
#include <stdexcept>
namespace pybind11 {
template <typename, typename...>
class class_;
}
namespace c10 {
class intrusive_ptr_target;
namespace raw {
namespace weak_intrusive_ptr {
inline void incref(intrusive_ptr_target* self);
}
namespace intrusive_ptr {
inline void incref(intrusive_ptr_target* self);
}
// constructor tag used by intrusive_ptr constructors
struct DontIncreaseRefcount {};
} // namespace raw
/**
* intrusive_ptr<T> is an alternative to shared_ptr<T> that has better
* performance because it does the refcounting intrusively
* (i.e. in a member of the object itself).
* Your class T needs to inherit from intrusive_ptr_target to allow it to be
* used in an intrusive_ptr<T>. Your class's constructor should not allow
*`this` to escape to other threads or create an intrusive_ptr from `this`.
*/
// Note [Stack allocated intrusive_ptr_target safety]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// A well known problem with std::enable_shared_from_this is that it
// allows you to create a std::shared_ptr from a stack allocated object,
// which is totally bogus because the object will die once you return
// from the stack. In intrusive_ptr, we can detect that this has occurred,
// because we set the refcount/weakcount of objects which inherit from
// intrusive_ptr_target to zero, *unless* we can prove that the object
// was dynamically allocated (e.g., via make_intrusive).
//
// Thus, whenever you transmute a T* into a intrusive_ptr<T>, we check
// and make sure that the refcount isn't zero (or, a more subtle
// test for weak_intrusive_ptr<T>, for which the refcount may validly
// be zero, but the weak refcount better not be zero), because that
// tells us if the object was allocated by us. If it wasn't, no
// intrusive_ptr for you!
class C10_API intrusive_ptr_target {
// Note [Weak references for intrusive refcounting]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Here's the scheme:
//
// - refcount == number of strong references to the object
// weakcount == number of weak references to the object,
// plus one more if refcount > 0
// An invariant: refcount > 0 => weakcount > 0
//
// - c10::StorageImpl stays live as long as there are any strong
// or weak pointers to it (weakcount > 0, since strong
// references count as a +1 to weakcount)
//
// - finalizers are called and data_ptr is deallocated when refcount == 0
//
// - Once refcount == 0, it can never again be > 0 (the transition
// from > 0 to == 0 is monotonic)
//
// - When you access c10::StorageImpl via a weak pointer, you must
// atomically increment the use count, if it is greater than 0.
// If it is not, you must report that the storage is dead.
//
mutable std::atomic<size_t> refcount_;
mutable std::atomic<size_t> weakcount_;
template <typename T, typename NullType>
friend class intrusive_ptr;
friend inline void raw::intrusive_ptr::incref(intrusive_ptr_target* self);
template <typename T, typename NullType>
friend class weak_intrusive_ptr;
friend inline void raw::weak_intrusive_ptr::incref(
intrusive_ptr_target* self);
template <typename T>
friend struct ExclusivelyOwnedTensorTraits;
protected:
// protected destructor. We never want to destruct intrusive_ptr_target*
// directly.
virtual ~intrusive_ptr_target() {
// Disable -Wterminate and -Wexceptions so we're allowed to use assertions
// (i.e. throw exceptions) in a destructor.
// We also have to disable -Wunknown-warning-option and -Wpragmas, because
// some other compilers don't know about -Wterminate or -Wexceptions and
// will show a warning about unknown warning options otherwise.
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(push)
#pragma warning( \
disable : 4297) // function assumed not to throw an exception but does
#else
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wunknown-warning-option"
#pragma GCC diagnostic ignored "-Wterminate"
#pragma GCC diagnostic ignored "-Wexceptions"
#endif
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
// Second condition is there to accommodate
// unsafe_adapt_non_heap_allocated: since we are doing our own
// deallocation in that case, it is correct for each
// expected_decref to have happened (some user code tried to
// decref and thus free the object, but it didn't happen right
// away) or not (no user code tried to free the object, and
// now it's getting destroyed through whatever mechanism the
// caller of unsafe_adapt_non_heap_allocated wanted to
// use). We choose our reference count such that the count
// will not dip below INT_MAX regardless.
refcount_.load() == 0 || refcount_.load() >= INT_MAX,
"Tried to destruct an intrusive_ptr_target that still has intrusive_ptr to it; refcount was ",
refcount_.load());
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
// See ~intrusive_ptr for optimization that will frequently result in 1
// at destruction time.
weakcount_.load() == 1 || weakcount_.load() == 0 ||
weakcount_.load() == INT_MAX - 1 || weakcount_.load() == INT_MAX,
"Tried to destruct an intrusive_ptr_target that still has weak_intrusive_ptr to it");
#if defined(_MSC_VER) && !defined(__clang__)
#pragma warning(pop)
#else
#pragma GCC diagnostic pop
#endif
}
constexpr intrusive_ptr_target() noexcept : refcount_(0), weakcount_(0) {}
// intrusive_ptr_target supports copy and move: but refcount and weakcount
// don't participate (since they are intrinsic properties of the memory
// location)
intrusive_ptr_target(intrusive_ptr_target&& /*other*/) noexcept
: intrusive_ptr_target() {}
intrusive_ptr_target& operator=(intrusive_ptr_target&& /*other*/) noexcept {
return *this;
}
intrusive_ptr_target(const intrusive_ptr_target& /*other*/) noexcept
: intrusive_ptr_target() {}
intrusive_ptr_target& operator=(
const intrusive_ptr_target& /*other*/) noexcept {
return *this;
}
private:
/**
* This is called when refcount reaches zero.
* You can override this to release expensive resources.
* There might still be weak references, so your object might not get
* destructed yet, but you can assume the object isn't used anymore,
* i.e. no more calls to methods or accesses to members (we just can't
* destruct it yet because we need the weakcount accessible).
*
* If there are no weak references (i.e. your class is about to be
* destructed), this function WILL NOT be called.
*/
virtual void release_resources() {}
};
namespace detail {
template <class TTarget>
struct intrusive_target_default_null_type final {
static constexpr TTarget* singleton() noexcept {
return nullptr;
}
};
template <class TTarget, class ToNullType, class FromNullType>
TTarget* assign_ptr_(TTarget* rhs) {
if (FromNullType::singleton() == rhs) {
return ToNullType::singleton();
} else {
return rhs;
}
}
// Increment needs to be acquire-release to make use_count() and
// unique() reliable.
inline size_t atomic_refcount_increment(std::atomic<size_t>& refcount) {
return refcount.fetch_add(1, std::memory_order_acq_rel) + 1;
}
// weak_use_count() is only used for testing, so we don't need it to
// be reliable. Relaxed should be fine.
inline size_t atomic_weakcount_increment(std::atomic<size_t>& weakcount) {
return weakcount.fetch_add(1, std::memory_order_relaxed) + 1;
}
// Both decrements need to be acquire-release for correctness. See
// e.g. std::shared_ptr implementation.
inline size_t atomic_refcount_decrement(std::atomic<size_t>& refcount) {
return refcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}
inline size_t atomic_weakcount_decrement(std::atomic<size_t>& weakcount) {
return weakcount.fetch_sub(1, std::memory_order_acq_rel) - 1;
}
} // namespace detail
template <class TTarget, class NullType>
class weak_intrusive_ptr;
template <
class TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>>
class intrusive_ptr final {
private:
// the following static assert would be nice to have but it requires
// the target class T to be fully defined when intrusive_ptr<T> is instantiated
// this is a problem for classes that contain pointers to themselves
// static_assert(
// std::is_base_of<intrusive_ptr_target, TTarget>::value,
// "intrusive_ptr can only be used for classes that inherit from
// intrusive_ptr_target.");
#ifndef _WIN32
// This static_assert triggers on MSVC
// error C2131: expression did not evaluate to a constant
static_assert(
NullType::singleton() == NullType::singleton(),
"NullType must have a constexpr singleton() method");
#endif
static_assert(
std::is_base_of<
TTarget,
typename std::remove_pointer<decltype(NullType::singleton())>::type>::
value,
"NullType::singleton() must return a element_type* pointer");
TTarget* target_;
template <typename T>
friend struct ExclusivelyOwnedTensorTraits;
template <class TTarget2, class NullType2>
friend class intrusive_ptr;
friend class weak_intrusive_ptr<TTarget, NullType>;
// Make pybind11::class_ be a friend class of intrusive_ptr, so that custom
// smart holder in pybind11 could access the private constructor of
// intrusive_ptr(T*) which took the ownership of the object. This is required
// by customer holder macro PYBIND11_DECLARE_HOLDER_TYPE, where it uses
// intrusive_ptr(TTarget*) to initialize and take ownership of the object. For
// details, see
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
template <typename, typename...>
friend class pybind11::class_;
void retain_() {
if (target_ != NullType::singleton()) {
size_t new_refcount =
detail::atomic_refcount_increment(target_->refcount_);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
new_refcount != 1,
"intrusive_ptr: Cannot increase refcount after it reached zero.");
}
}
void reset_() noexcept {
if (target_ != NullType::singleton() &&
detail::atomic_refcount_decrement(target_->refcount_) == 0) {
// See comment above about weakcount. As long as refcount>0,
// weakcount is one larger than the actual number of weak references.
// So we need to decrement it here.
bool should_delete =
target_->weakcount_.load(std::memory_order_acquire) == 1;
if (!should_delete) {
// justification for const_cast: release_resources is basically a
// destructor and a destructor always mutates the object, even for const
// objects. NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
const_cast<std::remove_const_t<TTarget>*>(target_)->release_resources();
should_delete =
detail::atomic_weakcount_decrement(target_->weakcount_) == 0;
}
if (should_delete) {
delete target_;
}
}
}
// raw pointer constructors are not public because we shouldn't make
// intrusive_ptr out of raw pointers except from inside the make_intrusive(),
// reclaim() and weak_intrusive_ptr::lock() implementations.
// This constructor will increase the ref counter for you.
// This constructor will be used by the make_intrusive(), and also pybind11,
// which wrap the intrusive_ptr holder around the raw pointer and incref
// correspondingly (pybind11 requires raw pointer constructor to incref by
// default).
explicit intrusive_ptr(TTarget* target)
: intrusive_ptr(target, raw::DontIncreaseRefcount{}) {
if (target_ != NullType::singleton()) {
// We just created result.target_, so we know no other thread has
// access to it, so we know we needn't care about memory ordering.
// (On x86_64, a store with memory_order_relaxed generates a plain old
// `mov`, whereas an atomic increment does a lock-prefixed `add`, which is
// much more expensive: https://godbolt.org/z/eKPzj8.)
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
target_->refcount_ == 0 && target_->weakcount_ == 0,
"intrusive_ptr: Newly-created target had non-zero refcounts. Does its "
"constructor do something strange like incref or create an "
"intrusive_ptr from `this`?");
target_->refcount_.store(1, std::memory_order_relaxed);
target_->weakcount_.store(1, std::memory_order_relaxed);
}
}
public:
using element_type = TTarget;
intrusive_ptr() noexcept
: intrusive_ptr(NullType::singleton(), raw::DontIncreaseRefcount{}) {}
// This constructor will not increase the ref counter for you.
// We use the tagged dispatch mechanism to explicitly mark this constructor
// to not increase the refcount
explicit intrusive_ptr(TTarget* target, raw::DontIncreaseRefcount) noexcept
: target_(target) {}
explicit intrusive_ptr(std::unique_ptr<TTarget> rhs) noexcept
: intrusive_ptr(rhs.release()) {}
intrusive_ptr(intrusive_ptr&& rhs) noexcept : target_(rhs.target_) {
rhs.target_ = NullType::singleton();
}
template <class From, class FromNullType>
/* implicit */ intrusive_ptr(intrusive_ptr<From, FromNullType>&& rhs) noexcept
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr move constructor got pointer of wrong type.");
rhs.target_ = FromNullType::singleton();
}
intrusive_ptr(const intrusive_ptr& rhs) : target_(rhs.target_) {
retain_();
}
template <class From, class FromNullType>
/* implicit */ intrusive_ptr(const intrusive_ptr<From, FromNullType>& rhs)
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr copy constructor got pointer of wrong type.");
retain_();
}
~intrusive_ptr() noexcept {
reset_();
}
intrusive_ptr& operator=(intrusive_ptr&& rhs) & noexcept {
return operator=<TTarget, NullType>(std::move(rhs));
}
template <class From, class FromNullType>
intrusive_ptr& operator=(intrusive_ptr<From, FromNullType>&& rhs) & noexcept {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr move assignment got pointer of wrong type.");
intrusive_ptr tmp = std::move(rhs);
swap(tmp);
return *this;
}
intrusive_ptr& operator=(const intrusive_ptr& rhs) & noexcept {
return operator=<TTarget, NullType>(rhs);
}
template <class From, class FromNullType>
intrusive_ptr& operator=(const intrusive_ptr<From, NullType>& rhs) & {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. intrusive_ptr copy assignment got pointer of wrong type.");
intrusive_ptr tmp = rhs;
swap(tmp);
return *this;
}
TTarget* get() const noexcept {
return target_;
}
TTarget& operator*() const noexcept {
return *target_;
}
TTarget* operator->() const noexcept {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDelete)
return target_;
}
operator bool() const noexcept {
return target_ != NullType::singleton();
}
void reset() noexcept {
reset_();
target_ = NullType::singleton();
}
void swap(intrusive_ptr& rhs) noexcept {
TTarget* tmp = target_;
target_ = rhs.target_;
rhs.target_ = tmp;
}
// We do a lot of null-pointer checks in our code, good to have this be cheap.
bool defined() const noexcept {
return target_ != NullType::singleton();
}
size_t use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->refcount_.load(std::memory_order_acquire);
}
size_t weak_use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->weakcount_.load(std::memory_order_acquire);
}
bool unique() const noexcept {
return use_count() == 1;
}
/**
* Returns an owning (!) pointer to the underlying object and makes the
* intrusive_ptr instance invalid. That means the refcount is not decreased.
* You *must* put the returned pointer back into a intrusive_ptr using
* intrusive_ptr::reclaim(ptr) to properly destruct it.
* This is helpful for C APIs.
*/
TTarget* release() noexcept {
// NOLINTNEXTLINE(clang-analyzer-core.uninitialized.Assign)
TTarget* result = target_;
target_ = NullType::singleton();
return result;
}
/**
* Takes an owning pointer to TTarget* and creates an intrusive_ptr that takes
* over ownership. That means the refcount is not increased.
* This is the counter-part to intrusive_ptr::release() and the pointer
* passed in *must* have been created using intrusive_ptr::release().
*/
static intrusive_ptr reclaim(TTarget* owning_ptr) {
return intrusive_ptr(owning_ptr, raw::DontIncreaseRefcount{});
}
/**
* Takes an owning pointer to TTarget* and creates an intrusive_ptr
* representing a new reference, i.e. the raw pointer retains
* ownership.
*/
static intrusive_ptr reclaim_copy(TTarget* owning_ptr) {
auto ret = reclaim(owning_ptr);
ret.retain_();
return ret;
}
/**
* Allocate a heap object with args and wrap it inside a intrusive_ptr and
* incref. This is a helper function to let make_intrusive() access private
* intrusive_ptr constructors.
*/
template <class... Args>
static intrusive_ptr make(Args&&... args) {
return intrusive_ptr(new TTarget(std::forward<Args>(args)...));
}
/**
* Turn a new instance of TTarget (e.g., literally allocated
* using new TTarget(...) into an intrusive_ptr. If possible,
* use intrusive_ptr::make instead which statically guarantees
* that the allocation was done properly.
*
* At the moment, the only reason this method exists is because
* pybind11 holder types expect to be able to allocate in
* this way (because pybind11 handles the new allocation itself).
*/
static intrusive_ptr unsafe_steal_from_new(TTarget* raw_ptr) {
return intrusive_ptr(raw_ptr);
}
/**
* Turn an instance of TTarget that should not be reference counted
* (e.g., allocated into an arena with placement new) into an
* intrusive_ptr. This is gratuitously unsafe and should only be
* used if you can guarantee that the pointer will not escape and be
* refcounted as normal.
*
* `expected_decrefs` is a debugging parameter: it indicates the
* number of strong owners the intrusive_ptr_target in question is
* expected to get. In most use cases, this will likely be 1.
*
* The reason this method exists is for manually sharing
* StorageImpls across Tensors in the static runtime. It needs
* access to private intrusive_ptr members so that the refcounts can
* be initialized to custom values.
*/
static intrusive_ptr unsafe_adapt_non_heap_allocated(
TTarget* raw_ptr,
size_t expected_decrefs) {
intrusive_ptr result(raw_ptr, raw::DontIncreaseRefcount{});
// INT_MAX is impractically huge for a reference count, while
// being in no danger of overflowing size_t. We actually only need to
// initialize the refcount to 2 -- we are just doing an unbalanced
// incref to prevent the non-heap-allocated target from being
// freed, and we are optimizing that incref by directly
// initializing the refcounts rather than doing an expensive
// atomic increment. The reason to use INT_MAX is to accommodate
// the debug assertions in ~intrusive_ptr_target.
#ifdef NDEBUG
expected_decrefs = 0;
#endif
result.target_->refcount_.store(
INT_MAX + expected_decrefs, std::memory_order_relaxed);
result.target_->weakcount_.store(INT_MAX, std::memory_order_relaxed);
return result;
}
/**
* Turn a **non-owning raw pointer** to an intrusive_ptr. It is
* the moral equivalent of enable_shared_from_this on a shared pointer.
*
* This method is only valid for objects that are already live. If
* you are looking for the moral equivalent of unique_ptr<T>(T*)
* constructor, see steal_from_new.
*
* TODO: https://github.com/pytorch/pytorch/issues/56482
*/
static intrusive_ptr unsafe_reclaim_from_nonowning(TTarget* raw_ptr) {
// See Note [Stack allocated intrusive_ptr_target safety]
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
raw_ptr == NullType::singleton() || raw_ptr->refcount_.load() > 0,
"intrusive_ptr: Can only reclaim pointers that are owned by someone");
auto ptr = reclaim(raw_ptr); // doesn't increase refcount
ptr.retain_();
return ptr;
}
};
template <
class TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>,
class... Args>
inline intrusive_ptr<TTarget, NullType> make_intrusive(Args&&... args) {
return intrusive_ptr<TTarget, NullType>::make(std::forward<Args>(args)...);
}
template <class TTarget, class NullType>
inline void swap(
intrusive_ptr<TTarget, NullType>& lhs,
intrusive_ptr<TTarget, NullType>& rhs) noexcept {
lhs.swap(rhs);
}
// To allow intrusive_ptr inside std::map or std::set, we need operator<
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator<(
const intrusive_ptr<TTarget1, NullType1>& lhs,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.get() < rhs.get();
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator==(
const intrusive_ptr<TTarget1, NullType1>& lhs,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.get() == rhs.get();
}
template <class TTarget1, class NullType1>
inline bool operator==(
const intrusive_ptr<TTarget1, NullType1>& lhs,
std::nullptr_t) noexcept {
return lhs.get() == nullptr;
}
template <class TTarget2, class NullType2>
inline bool operator==(
std::nullptr_t,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return nullptr == rhs.get();
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator!=(
const intrusive_ptr<TTarget1, NullType1>& lhs,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return !operator==(lhs, rhs);
}
template <class TTarget1, class NullType1>
inline bool operator!=(
const intrusive_ptr<TTarget1, NullType1>& lhs,
std::nullptr_t) noexcept {
return !operator==(lhs, nullptr);
}
template <class TTarget2, class NullType2>
inline bool operator!=(
std::nullptr_t,
const intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return !operator==(nullptr, rhs);
}
template <typename T>
struct MaybeOwnedTraits<c10::intrusive_ptr<T>> {
using owned_type = c10::intrusive_ptr<T>;
using borrow_type = c10::intrusive_ptr<T>;
static borrow_type createBorrow(const owned_type& from) {
return borrow_type::reclaim(from.get());
}
static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
lhs.release();
lhs = borrow_type::reclaim(rhs.get());
}
static void destroyBorrow(borrow_type& toDestroy) {
toDestroy.release();
}
static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
return borrow;
}
static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
return &borrow;
}
static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
return true;
}
};
template <
typename TTarget,
class NullType = detail::intrusive_target_default_null_type<TTarget>>
class weak_intrusive_ptr final {
private:
static_assert(
std::is_base_of<intrusive_ptr_target, TTarget>::value,
"intrusive_ptr can only be used for classes that inherit from intrusive_ptr_target.");
#ifndef _WIN32
// This static_assert triggers on MSVC
// error C2131: expression did not evaluate to a constant
static_assert(
NullType::singleton() == NullType::singleton(),
"NullType must have a constexpr singleton() method");
#endif
static_assert(
std::is_base_of<
TTarget,
typename std::remove_pointer<decltype(NullType::singleton())>::type>::
value,
"NullType::singleton() must return a element_type* pointer");
TTarget* target_;
template <class TTarget2, class NullType2>
friend class weak_intrusive_ptr;
void retain_() {
if (target_ != NullType::singleton()) {
size_t new_weakcount =
detail::atomic_weakcount_increment(target_->weakcount_);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
new_weakcount != 1,
"weak_intrusive_ptr: Cannot increase weakcount after it reached zero.");
}
}
void reset_() noexcept {
if (target_ != NullType::singleton() &&
detail::atomic_weakcount_decrement(target_->weakcount_) == 0) {
// NOLINTNEXTLINE(clang-analyzer-cplusplus.NewDelete)
delete target_;
}
target_ = NullType::singleton();
}
constexpr explicit weak_intrusive_ptr(TTarget* target) : target_(target) {}
public:
using element_type = TTarget;
explicit weak_intrusive_ptr(const intrusive_ptr<TTarget, NullType>& ptr)
: weak_intrusive_ptr(ptr.get()) {
retain_();
}
weak_intrusive_ptr(weak_intrusive_ptr&& rhs) noexcept : target_(rhs.target_) {
rhs.target_ = NullType::singleton();
}
template <class From, class FromNullType>
/* implicit */ weak_intrusive_ptr(
weak_intrusive_ptr<From, FromNullType>&& rhs) noexcept
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr move constructor got pointer of wrong type.");
rhs.target_ = FromNullType::singleton();
}
weak_intrusive_ptr(const weak_intrusive_ptr& rhs) : target_(rhs.target_) {
retain_();
}
template <class From, class FromNullType>
/* implicit */ weak_intrusive_ptr(
const weak_intrusive_ptr<From, FromNullType>& rhs)
: target_(
detail::assign_ptr_<TTarget, NullType, FromNullType>(rhs.target_)) {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr copy constructor got pointer of wrong type.");
retain_();
}
~weak_intrusive_ptr() noexcept {
reset_();
}
weak_intrusive_ptr& operator=(weak_intrusive_ptr&& rhs) & noexcept {
return operator=<TTarget, NullType>(std::move(rhs));
}
template <class From, class FromNullType>
weak_intrusive_ptr& operator=(
weak_intrusive_ptr<From, FromNullType>&& rhs) & noexcept {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr move assignment got pointer of wrong type.");
weak_intrusive_ptr tmp = std::move(rhs);
swap(tmp);
return *this;
}
weak_intrusive_ptr& operator=(const weak_intrusive_ptr& rhs) & noexcept {
return operator=<TTarget, NullType>(rhs);
}
weak_intrusive_ptr& operator=(
const intrusive_ptr<TTarget, NullType>& rhs) & noexcept {
weak_intrusive_ptr tmp(rhs);
swap(tmp);
return *this;
}
template <class From, class FromNullType>
weak_intrusive_ptr& operator=(
const weak_intrusive_ptr<From, NullType>& rhs) & {
static_assert(
std::is_convertible<From*, TTarget*>::value,
"Type mismatch. weak_intrusive_ptr copy assignment got pointer of wrong type.");
weak_intrusive_ptr tmp = rhs;
swap(tmp);
return *this;
}
void reset() noexcept {
reset_();
}
void swap(weak_intrusive_ptr& rhs) noexcept {
TTarget* tmp = target_;
target_ = rhs.target_;
rhs.target_ = tmp;
}
// NB: This should ONLY be used by the std::hash implementation
// for weak_intrusive_ptr. Another way you could do this is
// friend std::hash<weak_intrusive_ptr>, but this triggers two
// bugs:
//
// (1) It triggers an nvcc bug, where std::hash in a friend class
// declaration gets preprocessed into hash, which then cannot
// actually be found. The error in this case looks like:
//
// error: no template named 'hash'; did you mean 'std::hash'?
//
// (2) On OS X, std::hash is declared as a struct, not a class.
// This twings:
//
// error: class 'hash' was previously declared as a struct
// [-Werror,-Wmismatched-tags]
//
// Both of these are work-aroundable, but on the whole, I decided
// it would be simpler and easier to make work if we just expose
// an unsafe getter for target_
//
TTarget* _unsafe_get_target() const noexcept {
return target_;
}
size_t use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->refcount_.load(
std::memory_order_acquire); // refcount, not weakcount!
}
size_t weak_use_count() const noexcept {
if (target_ == NullType::singleton()) {
return 0;
}
return target_->weakcount_.load(std::memory_order_acquire);
}
bool expired() const noexcept {
return use_count() == 0;
}
intrusive_ptr<TTarget, NullType> lock() const noexcept {
if (expired()) {
return intrusive_ptr<TTarget, NullType>();
} else {
auto refcount = target_->refcount_.load(std::memory_order_seq_cst);
do {
if (refcount == 0) {
// Object already destructed, no strong references left anymore.
// Return nullptr.
return intrusive_ptr<TTarget, NullType>();
}
} while (
!target_->refcount_.compare_exchange_weak(refcount, refcount + 1));
return intrusive_ptr<TTarget, NullType>(
target_, raw::DontIncreaseRefcount{});
}
}
/**
* Returns an owning (but still only weakly referenced) pointer to the
* underlying object and makes the weak_intrusive_ptr instance invalid.
* That means the weakcount is not decreased.
* You *must* put the returned pointer back into a weak_intrusive_ptr using
* weak_intrusive_ptr::reclaim(ptr) to properly destruct it.
* This is helpful for C APIs.
*/
TTarget* release() noexcept {
TTarget* result = target_;
target_ = NullType::singleton();
return result;
}
/**
* Takes an owning (but must be weakly referenced) pointer to TTarget* and
* creates a weak_intrusive_ptr that takes over ownership.
* This means that the weakcount is not increased.
* This is the counter-part to weak_intrusive_ptr::release() and the pointer
* passed in *must* have been created using weak_intrusive_ptr::release().
*/
static weak_intrusive_ptr reclaim(TTarget* owning_weak_ptr) {
// See Note [Stack allocated intrusive_ptr_target safety]
// if refcount > 0, weakcount must be >1 for weak references to exist.
// see weak counting explanation at top of this file.
// if refcount == 0, weakcount only must be >0.
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
owning_weak_ptr == NullType::singleton() ||
owning_weak_ptr->weakcount_.load() > 1 ||
(owning_weak_ptr->refcount_.load() == 0 &&
owning_weak_ptr->weakcount_.load() > 0),
"weak_intrusive_ptr: Can only weak_intrusive_ptr::reclaim() owning pointers that were created using weak_intrusive_ptr::release().");
return weak_intrusive_ptr(owning_weak_ptr);
}
/**
* Takes a pointer to TTarget* (may be weak or strong) and creates a
* new weak_intrusive_ptr representing a new weak reference, i.e.
* the raw pointer retains ownership.
*/
static weak_intrusive_ptr reclaim_copy(TTarget* owning_ptr) {
auto ret = reclaim(owning_ptr);
ret.retain_();
return ret;
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
friend bool operator<(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept;
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
friend bool operator==(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept;
};
template <class TTarget, class NullType>
inline void swap(
weak_intrusive_ptr<TTarget, NullType>& lhs,
weak_intrusive_ptr<TTarget, NullType>& rhs) noexcept {
lhs.swap(rhs);
}
// To allow weak_intrusive_ptr inside std::map or std::set, we need operator<
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator<(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.target_ < rhs.target_;
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator==(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return lhs.target_ == rhs.target_;
}
template <class TTarget1, class NullType1, class TTarget2, class NullType2>
inline bool operator!=(
const weak_intrusive_ptr<TTarget1, NullType1>& lhs,
const weak_intrusive_ptr<TTarget2, NullType2>& rhs) noexcept {
return !operator==(lhs, rhs);
}
// Alias for documentary purposes, to more easily distinguish
// weak raw intrusive pointers from intrusive pointers.
using weak_intrusive_ptr_target = intrusive_ptr_target;
// This namespace provides some methods for working with
// raw pointers that subclass intrusive_ptr_target. They are not provided
// as methods on intrusive_ptr_target, because ideally you would not need these
// methods at all (use smart pointers), but if you are dealing with legacy code
// that still needs to pass around raw pointers, you may find these quite
// useful.
//
// An important usage note: some functions are only valid if you have a
// strong raw pointer to the object, while others are only valid if you
// have a weak raw pointer to the object. ONLY call intrusive_ptr namespace
// functions on strong pointers, and weak_intrusive_ptr namespace functions
// on weak pointers. If you mix it up, you may get an assert failure.
namespace raw {
namespace intrusive_ptr {
// WARNING: Unlike the reclaim() API, it is NOT valid to pass
// NullType::singleton to this function
inline void incref(intrusive_ptr_target* self) {
if (self) {
detail::atomic_refcount_increment(self->refcount_);
}
}
// WARNING: Unlike the reclaim() API, it is NOT valid to pass
// NullType::singleton to this function
inline void decref(intrusive_ptr_target* self) {
// Let it die
c10::intrusive_ptr<intrusive_ptr_target>::reclaim(self);
// NB: Caller still has 'self' pointer, but it's now invalid.
// If you want more safety, used the actual c10::intrusive_ptr class
}
template <typename T>
inline T* make_weak(T* self) {
// NB: 'this' is a strong pointer, but we return a weak pointer
auto ptr = c10::intrusive_ptr<T>::reclaim(self);
c10::weak_intrusive_ptr<T> wptr(ptr);
ptr.release();
return wptr.release();
}
inline size_t use_count(intrusive_ptr_target* self) {
auto ptr = c10::intrusive_ptr<intrusive_ptr_target>::reclaim(self);
auto r = ptr.use_count();
ptr.release();
return r;
}
} // namespace intrusive_ptr
namespace weak_intrusive_ptr {
inline void incref(weak_intrusive_ptr_target* self) {
detail::atomic_weakcount_increment(self->weakcount_);
}
inline void decref(weak_intrusive_ptr_target* self) {
// Let it die
c10::weak_intrusive_ptr<intrusive_ptr_target>::reclaim(self);
// NB: You still "have" the 'self' pointer, but it's now invalid.
// If you want more safety, used the actual c10::weak_intrusive_ptr class
}
template <typename T>
inline T* lock(T* self) {
auto wptr = c10::weak_intrusive_ptr<T>::reclaim(self);
auto ptr = wptr.lock();
wptr.release();
return ptr.release();
}
// This gives the STRONG refcount of a WEAK pointer
inline size_t use_count(weak_intrusive_ptr_target* self) {
auto wptr = c10::weak_intrusive_ptr<intrusive_ptr_target>::reclaim(self);
auto r = wptr.use_count();
wptr.release();
return r;
}
} // namespace weak_intrusive_ptr
} // namespace raw
} // namespace c10
namespace std {
// To allow intrusive_ptr and weak_intrusive_ptr inside std::unordered_map or
// std::unordered_set, we need std::hash
template <class TTarget, class NullType>
struct hash<c10::intrusive_ptr<TTarget, NullType>> {
size_t operator()(const c10::intrusive_ptr<TTarget, NullType>& x) const {
return std::hash<TTarget*>()(x.get());
}
};
template <class TTarget, class NullType>
struct hash<c10::weak_intrusive_ptr<TTarget, NullType>> {
size_t operator()(const c10::weak_intrusive_ptr<TTarget, NullType>& x) const {
return std::hash<TTarget*>()(x._unsafe_get_target());
}
};
} // namespace std
|