1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
//===-- llvm/Support/MathExtras.h - Useful math functions -------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains some functions that are useful for math stuff.
//
//===----------------------------------------------------------------------===//
#pragma once
#include <algorithm>
#include <cassert>
#include <climits>
#include <cmath>
#include <cstdint>
#include <cstring>
#include <limits>
#include <type_traits>
#ifdef __ANDROID_NDK__
#include <android/api-level.h>
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#ifndef LLVM_GNUC_PREREQ
#if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__)
#define LLVM_GNUC_PREREQ(maj, min, patch) \
((__GNUC__ << 20) + (__GNUC_MINOR__ << 10) + __GNUC_PATCHLEVEL__ >= \
((maj) << 20) + ((min) << 10) + (patch))
#elif defined(__GNUC__) && defined(__GNUC_MINOR__)
#define LLVM_GNUC_PREREQ(maj, min, patch) \
((__GNUC__ << 20) + (__GNUC_MINOR__ << 10) >= ((maj) << 20) + ((min) << 10))
#else
#define LLVM_GNUC_PREREQ(maj, min, patch) 0
#endif
#endif
#ifdef _MSC_VER
// Declare these intrinsics manually rather including intrin.h. It's very
// expensive, and MathExtras.h is popular.
// #include <intrin.h>
extern "C" {
unsigned char _BitScanForward(unsigned long* _Index, unsigned long _Mask);
unsigned char _BitScanForward64(unsigned long* _Index, unsigned __int64 _Mask);
unsigned char _BitScanReverse(unsigned long* _Index, unsigned long _Mask);
unsigned char _BitScanReverse64(unsigned long* _Index, unsigned __int64 _Mask);
}
#endif
namespace c10 {
namespace llvm {
/// The behavior an operation has on an input of 0.
enum ZeroBehavior {
/// The returned value is undefined.
ZB_Undefined,
/// The returned value is numeric_limits<T>::max()
ZB_Max,
/// The returned value is numeric_limits<T>::digits
ZB_Width
};
namespace detail {
template <typename T, std::size_t SizeOfT>
struct TrailingZerosCounter {
static std::size_t count(T Val, ZeroBehavior) {
if (!Val)
return std::numeric_limits<T>::digits;
if (Val & 0x1)
return 0;
// Bisection method.
std::size_t ZeroBits = 0;
T Shift = std::numeric_limits<T>::digits >> 1;
T Mask = std::numeric_limits<T>::max() >> Shift;
while (Shift) {
if ((Val & Mask) == 0) {
Val >>= Shift;
ZeroBits |= Shift;
}
Shift >>= 1;
Mask >>= Shift;
}
return ZeroBits;
}
};
#if (defined(__GNUC__) && __GNUC__ >= 4) || defined(_MSC_VER)
template <typename T>
struct TrailingZerosCounter<T, 4> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 32;
#if __has_builtin(__builtin_ctz) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_ctz(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanForward(&Index, Val);
return Index;
#endif
}
};
#if !defined(_MSC_VER) || defined(_M_X64)
template <typename T>
struct TrailingZerosCounter<T, 8> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 64;
#if __has_builtin(__builtin_ctzll) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_ctzll(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanForward64(&Index, Val);
return Index;
#endif
}
};
#endif
#endif
} // namespace detail
/// Count number of 0's from the least significant bit to the most
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
template <typename T>
std::size_t countTrailingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
static_assert(
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return llvm::detail::TrailingZerosCounter<T, sizeof(T)>::count(Val, ZB);
}
namespace detail {
template <typename T, std::size_t SizeOfT>
struct LeadingZerosCounter {
static std::size_t count(T Val, ZeroBehavior) {
if (!Val)
return std::numeric_limits<T>::digits;
// Bisection method.
std::size_t ZeroBits = 0;
for (T Shift = std::numeric_limits<T>::digits >> 1; Shift; Shift >>= 1) {
T Tmp = Val >> Shift;
if (Tmp)
Val = Tmp;
else
ZeroBits |= Shift;
}
return ZeroBits;
}
};
#if (defined(__GNUC__) && __GNUC__ >= 4) || defined(_MSC_VER)
template <typename T>
struct LeadingZerosCounter<T, 4> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 32;
#if __has_builtin(__builtin_clz) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_clz(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanReverse(&Index, Val);
return Index ^ 31;
#endif
}
};
#if !defined(_MSC_VER) || defined(_M_X64)
template <typename T>
struct LeadingZerosCounter<T, 8> {
static std::size_t count(T Val, ZeroBehavior ZB) {
if (ZB != ZB_Undefined && Val == 0)
return 64;
#if __has_builtin(__builtin_clzll) || LLVM_GNUC_PREREQ(4, 0, 0)
return __builtin_clzll(Val);
#elif defined(_MSC_VER)
unsigned long Index;
_BitScanReverse64(&Index, Val);
return Index ^ 63;
#endif
}
};
#endif
#endif
} // namespace detail
/// Count number of 0's from the most significant bit to the least
/// stopping at the first 1.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Width and ZB_Undefined are
/// valid arguments.
template <typename T>
std::size_t countLeadingZeros(T Val, ZeroBehavior ZB = ZB_Width) {
static_assert(
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return llvm::detail::LeadingZerosCounter<T, sizeof(T)>::count(Val, ZB);
}
/// Get the index of the first set bit starting from the least
/// significant bit.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
/// valid arguments.
template <typename T>
T findFirstSet(T Val, ZeroBehavior ZB = ZB_Max) {
if (ZB == ZB_Max && Val == 0)
return std::numeric_limits<T>::max();
return countTrailingZeros(Val, ZB_Undefined);
}
/// Create a bitmask with the N right-most bits set to 1, and all other
/// bits set to 0. Only unsigned types are allowed.
template <typename T>
T maskTrailingOnes(unsigned N) {
static_assert(std::is_unsigned<T>::value, "Invalid type!");
const unsigned Bits = CHAR_BIT * sizeof(T);
assert(N <= Bits && "Invalid bit index");
return N == 0 ? 0 : (T(-1) >> (Bits - N));
}
/// Create a bitmask with the N left-most bits set to 1, and all other
/// bits set to 0. Only unsigned types are allowed.
template <typename T>
T maskLeadingOnes(unsigned N) {
return ~maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
}
/// Create a bitmask with the N right-most bits set to 0, and all other
/// bits set to 1. Only unsigned types are allowed.
template <typename T>
T maskTrailingZeros(unsigned N) {
return maskLeadingOnes<T>(CHAR_BIT * sizeof(T) - N);
}
/// Create a bitmask with the N left-most bits set to 0, and all other
/// bits set to 1. Only unsigned types are allowed.
template <typename T>
T maskLeadingZeros(unsigned N) {
return maskTrailingOnes<T>(CHAR_BIT * sizeof(T) - N);
}
/// Get the index of the last set bit starting from the least
/// significant bit.
///
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of 0. Only ZB_Max and ZB_Undefined are
/// valid arguments.
template <typename T>
T findLastSet(T Val, ZeroBehavior ZB = ZB_Max) {
if (ZB == ZB_Max && Val == 0)
return std::numeric_limits<T>::max();
// Use ^ instead of - because both gcc and llvm can remove the associated ^
// in the __builtin_clz intrinsic on x86.
return countLeadingZeros(Val, ZB_Undefined) ^
(std::numeric_limits<T>::digits - 1);
}
/// Macro compressed bit reversal table for 256 bits.
///
/// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
static const unsigned char BitReverseTable256[256] = {
#define R2(n) n, n + 2 * 64, n + 1 * 64, n + 3 * 64
#define R4(n) R2(n), R2(n + 2 * 16), R2(n + 1 * 16), R2(n + 3 * 16)
#define R6(n) R4(n), R4(n + 2 * 4), R4(n + 1 * 4), R4(n + 3 * 4)
R6(0),
R6(2),
R6(1),
R6(3)
#undef R2
#undef R4
#undef R6
};
/// Reverse the bits in \p Val.
template <typename T>
T reverseBits(T Val) {
unsigned char in[sizeof(Val)];
unsigned char out[sizeof(Val)];
std::memcpy(in, &Val, sizeof(Val));
for (unsigned i = 0; i < sizeof(Val); ++i)
out[(sizeof(Val) - i) - 1] = BitReverseTable256[in[i]];
std::memcpy(&Val, out, sizeof(Val));
return Val;
}
// NOTE: The following support functions use the _32/_64 extensions instead of
// type overloading so that signed and unsigned integers can be used without
// ambiguity.
/// Return the high 32 bits of a 64 bit value.
constexpr inline uint32_t Hi_32(uint64_t Value) {
return static_cast<uint32_t>(Value >> 32);
}
/// Return the low 32 bits of a 64 bit value.
constexpr inline uint32_t Lo_32(uint64_t Value) {
return static_cast<uint32_t>(Value);
}
/// Make a 64-bit integer from a high / low pair of 32-bit integers.
constexpr inline uint64_t Make_64(uint32_t High, uint32_t Low) {
return ((uint64_t)High << 32) | (uint64_t)Low;
}
/// Checks if an integer fits into the given bit width.
template <unsigned N>
constexpr inline bool isInt(int64_t x) {
return N >= 64 ||
(-(INT64_C(1) << (N - 1)) <= x && x < (INT64_C(1) << (N - 1)));
}
// Template specializations to get better code for common cases.
template <>
constexpr inline bool isInt<8>(int64_t x) {
return static_cast<int8_t>(x) == x;
}
template <>
constexpr inline bool isInt<16>(int64_t x) {
return static_cast<int16_t>(x) == x;
}
template <>
constexpr inline bool isInt<32>(int64_t x) {
return static_cast<int32_t>(x) == x;
}
/// Checks if a signed integer is an N bit number shifted left by S.
template <unsigned N, unsigned S>
constexpr inline bool isShiftedInt(int64_t x) {
static_assert(
N > 0, "isShiftedInt<0> doesn't make sense (refers to a 0-bit number.");
static_assert(N + S <= 64, "isShiftedInt<N, S> with N + S > 64 is too wide.");
return isInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
}
/// Checks if an unsigned integer fits into the given bit width.
///
/// This is written as two functions rather than as simply
///
/// return N >= 64 || X < (UINT64_C(1) << N);
///
/// to keep MSVC from (incorrectly) warning on isUInt<64> that we're shifting
/// left too many places.
template <unsigned N>
constexpr inline typename std::enable_if<(N < 64), bool>::type isUInt(
uint64_t X) {
static_assert(N > 0, "isUInt<0> doesn't make sense");
return X < (UINT64_C(1) << (N));
}
template <unsigned N>
constexpr inline typename std::enable_if<N >= 64, bool>::type isUInt(
uint64_t /*X*/) {
return true;
}
// Template specializations to get better code for common cases.
template <>
constexpr inline bool isUInt<8>(uint64_t x) {
return static_cast<uint8_t>(x) == x;
}
template <>
constexpr inline bool isUInt<16>(uint64_t x) {
return static_cast<uint16_t>(x) == x;
}
template <>
constexpr inline bool isUInt<32>(uint64_t x) {
return static_cast<uint32_t>(x) == x;
}
/// Checks if a unsigned integer is an N bit number shifted left by S.
template <unsigned N, unsigned S>
constexpr inline bool isShiftedUInt(uint64_t x) {
static_assert(
N > 0, "isShiftedUInt<0> doesn't make sense (refers to a 0-bit number)");
static_assert(
N + S <= 64, "isShiftedUInt<N, S> with N + S > 64 is too wide.");
// Per the two static_asserts above, S must be strictly less than 64. So
// 1 << S is not undefined behavior.
return isUInt<N + S>(x) && (x % (UINT64_C(1) << S) == 0);
}
/// Gets the maximum value for a N-bit unsigned integer.
inline uint64_t maxUIntN(uint64_t N) {
assert(N > 0 && N <= 64 && "integer width out of range");
// uint64_t(1) << 64 is undefined behavior, so we can't do
// (uint64_t(1) << N) - 1
// without checking first that N != 64. But this works and doesn't have a
// branch.
return UINT64_MAX >> (64 - N);
}
// Ignore the false warning "Arithmetic overflow" for MSVC
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4146)
#endif
/// Gets the minimum value for a N-bit signed integer.
inline int64_t minIntN(int64_t N) {
assert(N > 0 && N <= 64 && "integer width out of range");
return -(UINT64_C(1) << (N - 1));
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
/// Gets the maximum value for a N-bit signed integer.
inline int64_t maxIntN(int64_t N) {
assert(N > 0 && N <= 64 && "integer width out of range");
// This relies on two's complement wraparound when N == 64, so we convert to
// int64_t only at the very end to avoid UB.
return (UINT64_C(1) << (N - 1)) - 1;
}
/// Checks if an unsigned integer fits into the given (dynamic) bit width.
inline bool isUIntN(unsigned N, uint64_t x) {
return N >= 64 || x <= maxUIntN(N);
}
/// Checks if an signed integer fits into the given (dynamic) bit width.
inline bool isIntN(unsigned N, int64_t x) {
return N >= 64 || (minIntN(N) <= x && x <= maxIntN(N));
}
/// Return true if the argument is a non-empty sequence of ones starting at the
/// least significant bit with the remainder zero (32 bit version).
/// Ex. isMask_32(0x0000FFFFU) == true.
constexpr inline bool isMask_32(uint32_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// Return true if the argument is a non-empty sequence of ones starting at the
/// least significant bit with the remainder zero (64 bit version).
constexpr inline bool isMask_64(uint64_t Value) {
return Value && ((Value + 1) & Value) == 0;
}
/// Return true if the argument contains a non-empty sequence of ones with the
/// remainder zero (32 bit version.) Ex. isShiftedMask_32(0x0000FF00U) == true.
constexpr inline bool isShiftedMask_32(uint32_t Value) {
return Value && isMask_32((Value - 1) | Value);
}
/// Return true if the argument contains a non-empty sequence of ones with the
/// remainder zero (64 bit version.)
constexpr inline bool isShiftedMask_64(uint64_t Value) {
return Value && isMask_64((Value - 1) | Value);
}
/// Return true if the argument is a power of two > 0.
/// Ex. isPowerOf2_32(0x00100000U) == true (32 bit edition.)
constexpr inline bool isPowerOf2_32(uint32_t Value) {
return Value && !(Value & (Value - 1));
}
/// Return true if the argument is a power of two > 0 (64 bit edition.)
constexpr inline bool isPowerOf2_64(uint64_t Value) {
return Value && !(Value & (Value - 1));
}
/// Count the number of ones from the most significant bit to the first
/// zero bit.
///
/// Ex. countLeadingOnes(0xFF0FFF00) == 8.
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
/// ZB_Undefined are valid arguments.
template <typename T>
std::size_t countLeadingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
static_assert(
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return countLeadingZeros<T>(~Value, ZB);
}
/// Count the number of ones from the least significant bit to the first
/// zero bit.
///
/// Ex. countTrailingOnes(0x00FF00FF) == 8.
/// Only unsigned integral types are allowed.
///
/// \param ZB the behavior on an input of all ones. Only ZB_Width and
/// ZB_Undefined are valid arguments.
template <typename T>
std::size_t countTrailingOnes(T Value, ZeroBehavior ZB = ZB_Width) {
static_assert(
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return countTrailingZeros<T>(~Value, ZB);
}
namespace detail {
template <typename T, std::size_t SizeOfT>
struct PopulationCounter {
static unsigned count(T Value) {
// Generic version, forward to 32 bits.
static_assert(SizeOfT <= 4, "Not implemented!");
#if defined(__GNUC__) && __GNUC__ >= 4
return __builtin_popcount(Value);
#else
uint32_t v = Value;
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
#endif
}
};
template <typename T>
struct PopulationCounter<T, 8> {
static unsigned count(T Value) {
#if defined(__GNUC__) && __GNUC__ >= 4
return __builtin_popcountll(Value);
#else
uint64_t v = Value;
v = v - ((v >> 1) & 0x5555555555555555ULL);
v = (v & 0x3333333333333333ULL) + ((v >> 2) & 0x3333333333333333ULL);
v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL;
return unsigned((uint64_t)(v * 0x0101010101010101ULL) >> 56);
#endif
}
};
} // namespace detail
/// Count the number of set bits in a value.
/// Ex. countPopulation(0xF000F000) = 8
/// Returns 0 if the word is zero.
template <typename T>
inline unsigned countPopulation(T Value) {
static_assert(
std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
"Only unsigned integral types are allowed.");
return detail::PopulationCounter<T, sizeof(T)>::count(Value);
}
/// Return the log base 2 of the specified value.
inline double Log2(double Value) {
#if defined(__ANDROID_API__) && __ANDROID_API__ < 18
return __builtin_log(Value) / __builtin_log(2.0);
#else
return log2(Value);
#endif
}
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
/// (32 bit edition.)
/// Ex. Log2_32(32) == 5, Log2_32(1) == 0, Log2_32(0) == -1, Log2_32(6) == 2
inline unsigned Log2_32(uint32_t Value) {
return static_cast<unsigned>(31 - countLeadingZeros(Value));
}
/// Return the floor log base 2 of the specified value, -1 if the value is zero.
/// (64 bit edition.)
inline unsigned Log2_64(uint64_t Value) {
return static_cast<unsigned>(63 - countLeadingZeros(Value));
}
/// Return the ceil log base 2 of the specified value, 32 if the value is zero.
/// (32 bit edition).
/// Ex. Log2_32_Ceil(32) == 5, Log2_32_Ceil(1) == 0, Log2_32_Ceil(6) == 3
inline unsigned Log2_32_Ceil(uint32_t Value) {
return static_cast<unsigned>(32 - countLeadingZeros(Value - 1));
}
/// Return the ceil log base 2 of the specified value, 64 if the value is zero.
/// (64 bit edition.)
inline unsigned Log2_64_Ceil(uint64_t Value) {
return static_cast<unsigned>(64 - countLeadingZeros(Value - 1));
}
/// Return the greatest common divisor of the values using Euclid's algorithm.
inline uint64_t GreatestCommonDivisor64(uint64_t A, uint64_t B) {
while (B) {
uint64_t T = B;
B = A % B;
A = T;
}
return A;
}
/// This function takes a 64-bit integer and returns the bit equivalent double.
inline double BitsToDouble(uint64_t Bits) {
double D;
static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
memcpy(&D, &Bits, sizeof(Bits));
return D;
}
/// This function takes a 32-bit integer and returns the bit equivalent float.
inline float BitsToFloat(uint32_t Bits) {
// TODO: Use bit_cast once C++20 becomes available.
float F;
static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
memcpy(&F, &Bits, sizeof(Bits));
return F;
}
/// This function takes a double and returns the bit equivalent 64-bit integer.
/// Note that copying doubles around changes the bits of NaNs on some hosts,
/// notably x86, so this routine cannot be used if these bits are needed.
inline uint64_t DoubleToBits(double Double) {
uint64_t Bits;
static_assert(sizeof(uint64_t) == sizeof(double), "Unexpected type sizes");
memcpy(&Bits, &Double, sizeof(Double));
return Bits;
}
/// This function takes a float and returns the bit equivalent 32-bit integer.
/// Note that copying floats around changes the bits of NaNs on some hosts,
/// notably x86, so this routine cannot be used if these bits are needed.
inline uint32_t FloatToBits(float Float) {
uint32_t Bits;
static_assert(sizeof(uint32_t) == sizeof(float), "Unexpected type sizes");
memcpy(&Bits, &Float, sizeof(Float));
return Bits;
}
/// A and B are either alignments or offsets. Return the minimum alignment that
/// may be assumed after adding the two together.
constexpr inline uint64_t MinAlign(uint64_t A, uint64_t B) {
// The largest power of 2 that divides both A and B.
//
// Replace "-Value" by "1+~Value" in the following commented code to avoid
// MSVC warning C4146
// return (A | B) & -(A | B);
return (A | B) & (1 + ~(A | B));
}
/// Aligns \c Addr to \c Alignment bytes, rounding up.
///
/// Alignment should be a power of two. This method rounds up, so
/// alignAddr(7, 4) == 8 and alignAddr(8, 4) == 8.
inline uintptr_t alignAddr(const void* Addr, size_t Alignment) {
assert(
Alignment && isPowerOf2_64((uint64_t)Alignment) &&
"Alignment is not a power of two!");
assert((uintptr_t)Addr + Alignment - 1 >= (uintptr_t)Addr);
return (((uintptr_t)Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1));
}
/// Returns the necessary adjustment for aligning \c Ptr to \c Alignment
/// bytes, rounding up.
inline size_t alignmentAdjustment(const void* Ptr, size_t Alignment) {
return alignAddr(Ptr, Alignment) - (uintptr_t)Ptr;
}
/// Returns the next power of two (in 64-bits) that is strictly greater than A.
/// Returns zero on overflow.
inline uint64_t NextPowerOf2(uint64_t A) {
A |= (A >> 1);
A |= (A >> 2);
A |= (A >> 4);
A |= (A >> 8);
A |= (A >> 16);
A |= (A >> 32);
return A + 1;
}
/// Returns the power of two which is less than or equal to the given value.
/// Essentially, it is a floor operation across the domain of powers of two.
inline uint64_t PowerOf2Floor(uint64_t A) {
if (!A)
return 0;
return 1ull << (63 - countLeadingZeros(A, ZB_Undefined));
}
/// Returns the power of two which is greater than or equal to the given value.
/// Essentially, it is a ceil operation across the domain of powers of two.
inline uint64_t PowerOf2Ceil(uint64_t A) {
if (!A)
return 0;
return NextPowerOf2(A - 1);
}
/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \p Align. \p Align must be non-zero.
///
/// If non-zero \p Skew is specified, the return value will be a minimal
/// integer that is greater than or equal to \p Value and equal to
/// \p Align * N + \p Skew for some integer N. If \p Skew is larger than
/// \p Align, its value is adjusted to '\p Skew mod \p Align'.
///
/// Examples:
/// \code
/// alignTo(5, 8) = 8
/// alignTo(17, 8) = 24
/// alignTo(~0LL, 8) = 0
/// alignTo(321, 255) = 510
///
/// alignTo(5, 8, 7) = 7
/// alignTo(17, 8, 1) = 17
/// alignTo(~0LL, 8, 3) = 3
/// alignTo(321, 255, 42) = 552
/// \endcode
inline uint64_t alignTo(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align;
return (Value + Align - 1 - Skew) / Align * Align + Skew;
}
/// Returns the next integer (mod 2**64) that is greater than or equal to
/// \p Value and is a multiple of \c Align. \c Align must be non-zero.
template <uint64_t Align>
constexpr inline uint64_t alignTo(uint64_t Value) {
static_assert(Align != 0u, "Align must be non-zero");
return (Value + Align - 1) / Align * Align;
}
/// Returns the integer ceil(Numerator / Denominator).
inline uint64_t divideCeil(uint64_t Numerator, uint64_t Denominator) {
return alignTo(Numerator, Denominator) / Denominator;
}
/// \c alignTo for contexts where a constant expression is required.
/// \sa alignTo
///
/// \todo FIXME: remove when \c constexpr becomes really \c constexpr
template <uint64_t Align>
struct AlignTo {
static_assert(Align != 0u, "Align must be non-zero");
template <uint64_t Value>
struct from_value {
static const uint64_t value = (Value + Align - 1) / Align * Align;
};
};
/// Returns the largest uint64_t less than or equal to \p Value and is
/// \p Skew mod \p Align. \p Align must be non-zero
inline uint64_t alignDown(uint64_t Value, uint64_t Align, uint64_t Skew = 0) {
assert(Align != 0u && "Align can't be 0.");
Skew %= Align;
return (Value - Skew) / Align * Align + Skew;
}
/// Returns the offset to the next integer (mod 2**64) that is greater than
/// or equal to \p Value and is a multiple of \p Align. \p Align must be
/// non-zero.
inline uint64_t OffsetToAlignment(uint64_t Value, uint64_t Align) {
return alignTo(Value, Align) - Value;
}
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
/// Requires 0 < B <= 32.
template <unsigned B>
constexpr inline int32_t SignExtend32(uint32_t X) {
static_assert(B > 0, "Bit width can't be 0.");
static_assert(B <= 32, "Bit width out of range.");
return int32_t(X << (32 - B)) >> (32 - B);
}
/// Sign-extend the number in the bottom B bits of X to a 32-bit integer.
/// Requires 0 < B < 32.
inline int32_t SignExtend32(uint32_t X, unsigned B) {
assert(B > 0 && "Bit width can't be 0.");
assert(B <= 32 && "Bit width out of range.");
return int32_t(X << (32 - B)) >> (32 - B);
}
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
/// Requires 0 < B < 64.
template <unsigned B>
constexpr inline int64_t SignExtend64(uint64_t x) {
static_assert(B > 0, "Bit width can't be 0.");
static_assert(B <= 64, "Bit width out of range.");
return int64_t(x << (64 - B)) >> (64 - B);
}
/// Sign-extend the number in the bottom B bits of X to a 64-bit integer.
/// Requires 0 < B < 64.
inline int64_t SignExtend64(uint64_t X, unsigned B) {
assert(B > 0 && "Bit width can't be 0.");
assert(B <= 64 && "Bit width out of range.");
return int64_t(X << (64 - B)) >> (64 - B);
}
/// Subtract two unsigned integers, X and Y, of type T and return the absolute
/// value of the result.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type AbsoluteDifference(
T X,
T Y) {
return std::max(X, Y) - std::min(X, Y);
}
/// Add two unsigned integers, X and Y, of type T. Clamp the result to the
/// maximum representable value of T on overflow. ResultOverflowed indicates if
/// the result is larger than the maximum representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type SaturatingAdd(
T X,
T Y,
bool* ResultOverflowed = nullptr) {
bool Dummy;
bool& Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
// Hacker's Delight, p. 29
T Z = X + Y;
Overflowed = (Z < X || Z < Y);
if (Overflowed)
return std::numeric_limits<T>::max();
else
return Z;
}
/// Multiply two unsigned integers, X and Y, of type T. Clamp the result to the
/// maximum representable value of T on overflow. ResultOverflowed indicates if
/// the result is larger than the maximum representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type SaturatingMultiply(
T X,
T Y,
bool* ResultOverflowed = nullptr) {
bool Dummy;
bool& Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
// Hacker's Delight, p. 30 has a different algorithm, but we don't use that
// because it fails for uint16_t (where multiplication can have undefined
// behavior due to promotion to int), and requires a division in addition
// to the multiplication.
Overflowed = false;
// Log2(Z) would be either Log2Z or Log2Z + 1.
// Special case: if X or Y is 0, Log2_64 gives -1, and Log2Z
// will necessarily be less than Log2Max as desired.
int Log2Z = Log2_64(X) + Log2_64(Y);
const T Max = std::numeric_limits<T>::max();
int Log2Max = Log2_64(Max);
if (Log2Z < Log2Max) {
return X * Y;
}
if (Log2Z > Log2Max) {
Overflowed = true;
return Max;
}
// We're going to use the top bit, and maybe overflow one
// bit past it. Multiply all but the bottom bit then add
// that on at the end.
T Z = (X >> 1) * Y;
if (Z & ~(Max >> 1)) {
Overflowed = true;
return Max;
}
Z <<= 1;
if (X & 1)
return SaturatingAdd(Z, Y, ResultOverflowed);
return Z;
}
/// Multiply two unsigned integers, X and Y, and add the unsigned integer, A to
/// the product. Clamp the result to the maximum representable value of T on
/// overflow. ResultOverflowed indicates if the result is larger than the
/// maximum representable value of type T.
template <typename T>
typename std::enable_if<std::is_unsigned<T>::value, T>::type
SaturatingMultiplyAdd(T X, T Y, T A, bool* ResultOverflowed = nullptr) {
bool Dummy;
bool& Overflowed = ResultOverflowed ? *ResultOverflowed : Dummy;
T Product = SaturatingMultiply(X, Y, &Overflowed);
if (Overflowed)
return Product;
return SaturatingAdd(A, Product, &Overflowed);
}
/// Use this rather than HUGE_VALF; the latter causes warnings on MSVC.
extern const float huge_valf;
} // namespace llvm
} // namespace c10
|