1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
|
#pragma once
#include <atomic>
#include <cassert>
#include <complex>
#include <cstdlib>
#include <memory>
#include <mutex>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#ifdef __GXX_RTTI
#include <typeinfo>
#endif
#include <exception>
#include <c10/macros/Macros.h>
#include <c10/util/Backtrace.h>
#include <c10/util/C++17.h>
#include <c10/util/Exception.h>
#include <c10/util/IdWrapper.h>
#include <c10/util/Type.h>
#include <c10/util/TypeIndex.h>
#include <c10/util/TypeTraits.h>
#include <c10/util/flat_hash_map.h>
#include <c10/core/ScalarType.h>
#include <c10/util/irange.h>
/*
* TypeIdentifier is a small type containing an id.
* Types must be registered using CAFFE_DECLARE_KNOWN_TYPE() (in their header)
* and CAFFE_DEFINE_KNOWN_TYPE() (in their .cpp file) for them to have a type
* id. If a type is registered, you can also create an object containing meta
* data like constructor, destructor, stringified name, ... about the type by
* calling TypeMeta::Make<T>. This returns a TypeMeta() object, which is
* basically just a pointer to the type information, so it's cheap to pass
* around.
*/
// TODO: This file is still in the caffe2 namespace, despite living
// in the ATen directory. This is because the macro
// CAFFE_KNOWN_TYPE (and CAFFE_DECLARE_KNOWN_TYPE) defines a template
// specialization, which relies
// on the namespace of TypeMeta matching the namespace where the macro is
// called. This requires us to fix all of the call-sites, which I want to do
// later. So the namespace is not fixed at the moment.
// Make at::Half a fundamental type.
namespace c10 {
namespace guts {
template <>
struct is_fundamental<at::Half> : std::true_type {};
} // namespace guts
} // namespace c10
namespace caffe2 {
/**
* A type id is a unique id for a given C++ type.
* You need to register your types using CAFFE_KNOWN_TYPE(MyType) to be able to
* use TypeIdentifier with custom types. This is for example used to store the
* dtype of tensors.
*/
class C10_API TypeIdentifier final
: public at::IdWrapper<TypeIdentifier, c10::util::type_index> {
public:
friend std::ostream& operator<<(std::ostream& stream, TypeIdentifier typeId);
friend constexpr bool operator<(TypeIdentifier lhs, TypeIdentifier rhs);
/**
* Returns the unique id for the given type T. The id is unique for the type T
* in the sense that for any two different types, their ids are different; for
* the same type T, the id remains the same over different calls of the
* function. However, this is not guaranteed over different runs, as the id
* is generated during run-time. Do NOT serialize the id for storage.
*/
template <typename T>
static C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA TypeIdentifier Get() noexcept {
return TypeIdentifier(c10::util::get_type_index<T>());
}
static constexpr TypeIdentifier uninitialized() {
return TypeIdentifier(c10::util::type_index{0});
}
private:
constexpr explicit TypeIdentifier(c10::util::type_index id) : IdWrapper(id) {}
};
// Allow usage in std::map / std::set
// TODO Disallow this and rather use std::unordered_map/set everywhere
inline constexpr bool operator<(TypeIdentifier lhs, TypeIdentifier rhs) {
return lhs.underlyingId() < rhs.underlyingId();
}
inline std::ostream& operator<<(
std::ostream& stream,
caffe2::TypeIdentifier typeId) {
return stream << typeId.underlyingId();
}
} // namespace caffe2
namespace at {
using DataType = caffe2::TypeIdentifier;
}
C10_DEFINE_HASH_FOR_IDWRAPPER(caffe2::TypeIdentifier)
namespace caffe2 {
namespace detail {
// This struct holds the actual type information. There will be
// one allocated per type. TypeMeta objects will then point to the struct
// instance for the type they're configured for.
struct TypeMetaData final {
using New = void*();
using PlacementNew = void(void*, size_t);
using Copy = void(const void*, void*, size_t);
using PlacementDelete = void(void*, size_t);
using Delete = void(void*);
constexpr TypeMetaData() noexcept
: itemsize_(0),
new_(nullptr),
placementNew_(nullptr),
copy_(nullptr),
placementDelete_(nullptr),
delete_(nullptr),
id_(TypeIdentifier::uninitialized()),
name_("nullptr (uninitialized)") {}
constexpr TypeMetaData(
size_t itemsize,
New* newFn,
PlacementNew* placementNew,
Copy* copy,
PlacementDelete* placementDelete,
Delete* deleteFn,
TypeIdentifier id,
c10::string_view name) noexcept
: itemsize_(itemsize),
new_(newFn),
placementNew_(placementNew),
copy_(copy),
placementDelete_(placementDelete),
delete_(deleteFn),
id_(id),
name_(name) {}
size_t itemsize_;
New* new_;
PlacementNew* placementNew_;
Copy* copy_;
PlacementDelete* placementDelete_;
Delete* delete_;
TypeIdentifier id_;
c10::string_view name_;
};
// Mechanism for throwing errors which can't be prevented at compile time
// due to type erasure. E.g. somebody calling TypeMeta::copy() for
// non-copyable type. Right now just throws exception but is implemented
// in .cpp to manage dependencies
[[noreturn]] C10_API void _ThrowRuntimeTypeLogicError(const std::string& msg);
/**
* Placement new function for the type.
*/
template <typename T>
inline void _PlacementNew(void* ptr, size_t n) {
T* typed_ptr = static_cast<T*>(ptr);
for (const auto i : c10::irange(n)) {
new (typed_ptr + i) T;
}
}
template <typename T>
inline void _PlacementNewNotDefault(void* /*ptr*/, size_t /*n*/) {
_ThrowRuntimeTypeLogicError(
"Type " + std::string(c10::util::get_fully_qualified_type_name<T>()) +
" is not default-constructible.");
}
template <
typename T,
std::enable_if_t<std::is_default_constructible<T>::value>* = nullptr>
inline constexpr TypeMetaData::PlacementNew* _PickPlacementNew() {
return (c10::guts::is_fundamental<T>::value || std::is_pointer<T>::value)
? nullptr
: &_PlacementNew<T>;
}
template <
typename T,
std::enable_if_t<!std::is_default_constructible<T>::value>* = nullptr>
inline constexpr TypeMetaData::PlacementNew* _PickPlacementNew() {
static_assert(
!c10::guts::is_fundamental<T>::value && !std::is_pointer<T>::value,
"this should have picked the other SFINAE case");
return &_PlacementNewNotDefault<T>;
}
template <typename T>
inline void* _New() {
return new T;
}
template <typename T>
inline void* _NewNotDefault() {
_ThrowRuntimeTypeLogicError(
"Type " + std::string(c10::util::get_fully_qualified_type_name<T>()) +
" is not default-constructible.");
}
template <
typename T,
std::enable_if_t<std::is_default_constructible<T>::value>* = nullptr>
inline constexpr TypeMetaData::New* _PickNew() {
return &_New<T>;
}
template <
typename T,
std::enable_if_t<!std::is_default_constructible<T>::value>* = nullptr>
inline constexpr TypeMetaData::New* _PickNew() {
return &_NewNotDefault<T>;
}
/**
* Typed copy function for classes.
*/
template <typename T>
inline void _Copy(const void* src, void* dst, size_t n) {
const T* typed_src = static_cast<const T*>(src);
T* typed_dst = static_cast<T*>(dst);
for (const auto i : c10::irange(n)) {
typed_dst[i] = typed_src[i];
}
}
/**
* A placeholder function for types that do not allow assignment.
*/
template <typename T>
inline void _CopyNotAllowed(const void* /*src*/, void* /*dst*/, size_t /*n*/) {
_ThrowRuntimeTypeLogicError(
"Type " + std::string(c10::util::get_fully_qualified_type_name<T>()) +
" does not allow assignment.");
}
template <
typename T,
std::enable_if_t<std::is_copy_assignable<T>::value>* = nullptr>
inline constexpr TypeMetaData::Copy* _PickCopy() {
return (c10::guts::is_fundamental<T>::value || std::is_pointer<T>::value)
? nullptr
: &_Copy<T>;
}
template <
typename T,
std::enable_if_t<!std::is_copy_assignable<T>::value>* = nullptr>
inline constexpr TypeMetaData::Copy* _PickCopy() {
static_assert(
!c10::guts::is_fundamental<T>::value && !std::is_pointer<T>::value,
"this should have picked the other SFINAE case");
return &_CopyNotAllowed<T>;
}
/**
* Destructor for non-fundamental types.
*/
template <typename T>
inline void _PlacementDelete(void* ptr, size_t n) {
T* typed_ptr = static_cast<T*>(ptr);
for (const auto i : c10::irange(n)) {
typed_ptr[i].~T();
}
}
template <typename T>
inline constexpr TypeMetaData::PlacementDelete* _PickPlacementDelete() {
return (c10::guts::is_fundamental<T>::value || std::is_pointer<T>::value)
? nullptr
: &_PlacementDelete<T>;
}
template <typename T>
inline void _Delete(void* ptr) {
T* typed_ptr = static_cast<T*>(ptr);
delete typed_ptr;
}
template <class T>
inline constexpr TypeMetaData::Delete* _PickDelete() noexcept {
return &_Delete<T>;
}
class _Uninitialized final {};
} // namespace detail
//
// note: this is outside TypeMeta bc gcc seems to have trouble
// with scalarTypeItemSizes as a constexpr static member used by
// a public inline instance method
//
// item sizes for TypeMeta::itemsize() fast path
static constexpr uint8_t scalarTypeItemSizes[NumScalarTypes] = {
#define SCALAR_TYPE_SIZE(T, name) sizeof(T),
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(SCALAR_TYPE_SIZE)
#undef SCALAR_TYPE_SIZE
0, // Undefined
};
/**
* TypeMeta is a thin class that allows us to store the type of a container such
* as a blob, or the data type of a tensor, with a unique run-time id. It also
* stores some additional data such as the item size and the name of the type
* for run-time inspection.
*/
class C10_API TypeMeta final {
public:
using New = detail::TypeMetaData::New;
using PlacementNew = detail::TypeMetaData::PlacementNew;
using Copy = detail::TypeMetaData::Copy;
using PlacementDelete = detail::TypeMetaData::PlacementDelete;
using Delete = detail::TypeMetaData::Delete;
/** Create a dummy TypeMeta object. To create a TypeMeta object for a specific
* type, use TypeMeta::Make<T>().
*/
TypeMeta() noexcept;
/**
* Copy constructor.
*/
TypeMeta(const TypeMeta& src) noexcept = default;
/**
* Assignment operators.
*/
TypeMeta& operator=(const TypeMeta& src) noexcept = default;
TypeMeta(TypeMeta&& rhs) noexcept = default;
inline TypeMeta& operator=(ScalarType scalar_type) noexcept {
index_ = static_cast<uint16_t>(scalar_type);
return *this;
}
private:
// TypeMeta can only be created by Make, making sure that we do not
// create incorrectly mixed up TypeMeta objects.
explicit TypeMeta(const uint16_t index) noexcept : index_(index) {}
public:
/**
* Returns the type id.
*/
TypeIdentifier id() const noexcept {
return data().id_;
}
/**
* true if we represent some ScalarType type
*/
inline bool isScalarType() const noexcept {
return index_ < NumScalarTypes;
}
/**
* true if we represent ScalarType scalar_type
*/
inline bool isScalarType(ScalarType scalar_type) const noexcept {
return index_ == static_cast<uint16_t>(scalar_type);
}
/**
* Returns the size of the item.
*/
inline size_t itemsize() const noexcept {
if (C10_LIKELY(isScalarType())) {
return scalarTypeItemSizes[index_];
}
return data().itemsize_;
}
/**
* Returns the new function pointer for individual items.
*/
New* newFn() const noexcept {
return data().new_;
}
/**
* Returns the placement new function pointer for individual items.
*/
PlacementNew* placementNew() const noexcept {
return data().placementNew_;
}
/**
* Returns the typed copy function pointer for individual iterms.
*/
Copy* copy() const noexcept {
return data().copy_;
}
/**
* Returns the destructor function pointer for individual items.
*/
PlacementDelete* placementDelete() const noexcept {
return data().placementDelete_;
}
Delete* deleteFn() const noexcept {
return data().delete_;
}
/**
* Returns a printable name for the type.
*/
c10::string_view name() const noexcept {
return data().name_;
}
friend bool operator==(const TypeMeta lhs, const TypeMeta rhs) noexcept;
template <typename T>
bool Match() const noexcept {
return (*this == Make<T>());
}
// Below are static functions that can be called by passing a specific type.
template <class T>
static C10_HOST_CONSTEXPR_EXCEPT_WIN_CUDA TypeIdentifier Id() noexcept {
return TypeIdentifier::Get<T>();
}
template <class T>
static c10::string_view TypeName() noexcept {
return c10::util::get_fully_qualified_type_name<T>();
}
template <class T>
static constexpr size_t ItemSize() noexcept {
return sizeof(T);
}
/**
* Returns a TypeMeta object that corresponds to the typename T.
*/
template <typename T>
static TypeMeta Make() {
// The instance pointed to is declared here, but defined in a .cpp file.
// We need to silence the compiler warning about using an undefined
// variable template. '-Wpragmas' and '-Wunknown-warning-option' has to be
// disabled for compilers that don't know '-Wundefined-var-template' and
// would error at our attempt to disable it.
#ifndef _MSC_VER
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Wunknown-warning-option"
#pragma GCC diagnostic ignored "-Wundefined-var-template"
#endif
return TypeMeta(_typeMetaData<T>());
#ifndef _MSC_VER
#pragma GCC diagnostic pop
#endif
}
/**
* convert ScalarType enum values to TypeMeta handles
*/
static inline caffe2::TypeMeta fromScalarType(ScalarType scalar_type) {
const auto index = static_cast<uint16_t>(scalar_type);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
index < NumScalarTypes,
"Unrecognized Scalartype ",
scalar_type,
" (please report this error)");
return TypeMeta(index);
}
/**
* convert TypeMeta handles to ScalarType enum values
*/
inline ScalarType toScalarType() {
if (C10_LIKELY(isScalarType())) {
return static_cast<ScalarType>(index_);
}
error_unsupported_typemeta(*this);
}
private:
[[noreturn]] static void error_unsupported_typemeta(caffe2::TypeMeta dtype);
// hard limit number of registered types
// note: constexpr provokes Windows compilation error "member may not be
// initialized" static constexpr size_t MaxTypeIndex = 32;
//
#if defined C10_MOBILE
// The reason for this to be 32 and not UINT8_MAX is that the array
// initialization takes space which is proportional to the size of the array.
// The compiler seems to add code (or data padding) to initialize the array with
// empty elements. In practice, this array doesn't hold more than 18 elements
// (on mobile), so 32 should be plenty for now. Please see
// https://github.com/pytorch/pytorch/pull/51881 for details.
//
#define MaxTypeIndex 32
#else
#define MaxTypeIndex UINT8_MAX
#endif
// Protects type metadata allocation.
// NOLINTNEXTLINE(facebook-hte-NonPodStaticDeclaration)
static std::mutex typeMetaDatasLock;
static uint16_t nextTypeIndex;
static detail::TypeMetaData* typeMetaDatas();
static uint16_t existingMetaDataIndexForType(TypeIdentifier identifier);
#ifdef __CUDACC__
// NOTE [ TypeIdentifier::Get nvcc/clang discrepancy]
// nvcc and clang do not produce identical results for
// TypeIdentifier::Get, because TypeIdentifier::Get relies on
// __PRETTY_FUNCTION__ and they don't agree on the canonical names
// of types (e.g., nvcc normalizes to `short unsigned int`, but clang
// calls it `unsigned short`). Hide the implementation of this function
// from nvcc so that we always use clang (or whatever host C++ compiler)
// for TypeIdentifier::Get.
template <class T>
C10_EXPORT static uint16_t addTypeMetaData();
#else
template <class T>
C10_EXPORT static uint16_t addTypeMetaData() {
const auto identifier = TypeIdentifier::Get<T>();
// Need to hold this for the rest of the function, protecting:
// 1) existingMetaDataIndexForType()
// 2) nextTypeIndex++
// 3) the write into typeMetaDatas()
std::lock_guard<std::mutex> lock(typeMetaDatasLock);
// It may exist already if added in a different dynamic shared library.
const uint16_t existing_index = existingMetaDataIndexForType(identifier);
if (existing_index != MaxTypeIndex) {
return existing_index;
}
const uint16_t index = nextTypeIndex++;
TORCH_CHECK(
index <= MaxTypeIndex,
"Maximum number of CAFFE_KNOWN_TYPE declarations has been exceeded. ",
"Please report this issue.");
typeMetaDatas()[index] = detail::TypeMetaData{
sizeof(T),
detail::_PickNew<T>(),
detail::_PickPlacementNew<T>(),
detail::_PickCopy<T>(),
detail::_PickPlacementDelete<T>(),
detail::_PickDelete<T>(),
identifier,
c10::util::get_fully_qualified_type_name<T>()};
return index;
}
#endif
// specializations return indexes into typeMetaDataInstances()
template <class T>
C10_API static uint16_t _typeMetaData() noexcept;
//
// TypeMeta just wraps this index
//
uint16_t index_;
inline const detail::TypeMetaData& data() const {
return typeMetaDatas()[index_];
}
};
// specializations of TypeMeta::_typeMetaData for ScalarType types
#define DEFINE_SCALAR_METADATA_INSTANCE(T, name) \
template <> \
constexpr uint16_t TypeMeta::_typeMetaData<T>() noexcept { \
return static_cast<uint16_t>(ScalarType::name); \
}
AT_FORALL_SCALAR_TYPES_WITH_COMPLEX_AND_QINTS(DEFINE_SCALAR_METADATA_INSTANCE)
#undef DEFINE_SCALAR_METADATA_INSTANCE
template <>
C10_EXPORT constexpr uint16_t TypeMeta::_typeMetaData<
detail::_Uninitialized>() noexcept {
return static_cast<uint16_t>(ScalarType::Undefined);
}
inline TypeMeta::TypeMeta() noexcept
: index_(_typeMetaData<detail::_Uninitialized>()) {}
inline bool operator==(const TypeMeta lhs, const TypeMeta rhs) noexcept {
return (lhs.index_ == rhs.index_);
}
inline bool operator!=(const TypeMeta lhs, const TypeMeta rhs) noexcept {
return !operator==(lhs, rhs);
}
inline std::ostream& operator<<(
std::ostream& stream,
caffe2::TypeMeta typeMeta) {
return stream << typeMeta.name();
}
/**
* Register unique id for a type so it can be used in TypeMeta context, e.g. be
* used as a type for Blob or for Tensor elements.
*
* CAFFE_KNOWN_TYPE is deprecated; prefer CAFFE_DECLARE_KNOWN_TYPE and
* CAFFE_DEFINE_KNOWN_TYPE.
*
* CAFFE_KNOWN_TYPE does explicit instantiation of TypeIdentifier::Get<T>
* template function and thus needs to be put in a single translation unit (.cpp
* file) for a given type T. Other translation units that use type T as a type
* of the caffe2::Blob or element type of caffe2::Tensor need to depend on the
* translation unit that contains CAFFE_KNOWN_TYPE declaration via regular
* linkage dependencies.
*
* NOTE: the macro needs to be invoked in ::caffe2 namespace
*/
// Implementation note: in MSVC, we will need to prepend the C10_API
// keyword in order to get things compiled properly. in Linux, gcc seems to
// create attribute ignored error for explicit template instantiations, see
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0537r0.html
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=51930
// and as a result, we define these two macros slightly differently.
#if defined(_MSC_VER) || defined(__clang__)
#define EXPORT_IF_NOT_GCC C10_EXPORT
#else
#define EXPORT_IF_NOT_GCC
#endif
// CAFFE_KNOWN_TYPE is deprecated! Use CAFFE_DECLARE_KNOWN_TYPE and
// CAFFE_DEFINE_KNOWN_TYPE instead.
#define CAFFE_KNOWN_TYPE(T) \
template uint16_t TypeMeta::addTypeMetaData<T>(); \
template <> \
EXPORT_IF_NOT_GCC uint16_t TypeMeta::_typeMetaData<T>() noexcept { \
static const uint16_t index = addTypeMetaData<T>(); \
return index; \
}
#define CAFFE_DEFINE_KNOWN_TYPE(T) \
template uint16_t TypeMeta::addTypeMetaData<T>();
// Unlike CAFFE_KNOWN_TYPE, CAFFE_DECLARE_KNOWN_TYPE avoids a function
// call to access _typeMetaData in the common case.
#ifdef __CUDACC__
// nvcc needs its own specialization that doesn't use
// C10_ALWAYS_INLINE so that it doesn't need to see a definition for
// _addTypeMeta. See NOTE [ TypeIdentifier::Get nvcc/clang discrepancy
// ].
#define CAFFE_DECLARE_KNOWN_TYPE(T) \
extern template uint16_t TypeMeta::addTypeMetaData<T>(); \
template <> \
EXPORT_IF_NOT_GCC inline uint16_t TypeMeta::_typeMetaData<T>() noexcept { \
static const uint16_t index = addTypeMetaData<T>(); \
return index; \
}
#else
#define CAFFE_DECLARE_KNOWN_TYPE(T) \
extern template uint16_t TypeMeta::addTypeMetaData<T>(); \
template <> \
EXPORT_IF_NOT_GCC C10_ALWAYS_INLINE uint16_t \
TypeMeta::_typeMetaData<T>() noexcept { \
static const uint16_t index = addTypeMetaData<T>(); \
return index; \
}
#endif
#define CAFFE_KNOWN_TYPE_NOEXPORT(T) \
template <> \
uint16_t TypeMeta::_typeMetaData<T>() noexcept { \
static const uint16_t index = addTypeMetaData<T>(); \
return index; \
}
CAFFE_DECLARE_KNOWN_TYPE(std::string)
CAFFE_DECLARE_KNOWN_TYPE(uint16_t)
CAFFE_DECLARE_KNOWN_TYPE(char)
CAFFE_DECLARE_KNOWN_TYPE(std::unique_ptr<std::mutex>)
CAFFE_DECLARE_KNOWN_TYPE(std::unique_ptr<std::atomic<bool>>)
CAFFE_DECLARE_KNOWN_TYPE(std::vector<int32_t>)
CAFFE_DECLARE_KNOWN_TYPE(std::vector<int64_t>)
CAFFE_DECLARE_KNOWN_TYPE(std::vector<unsigned long>)
CAFFE_DECLARE_KNOWN_TYPE(bool*)
CAFFE_DECLARE_KNOWN_TYPE(char*)
CAFFE_DECLARE_KNOWN_TYPE(int*)
// For some of the compilers, long is defined separately from int32_t and
// int64_t. As a result we will need to actually define them separately.
// It is recommended that one does NOT use long - use int32_t and int64_t
// explicitly. Explicit long type annotation may go away in the future.
// details: This hack works by defining a _guard_long_unique type, which is
// long iff the compiler has a separate long type and is a dummy type otherwise.
// we then allocate a type id to that _guard_long_unique. If the compiler has a
// separate long type, this allocates a type id for long. Otherwise, it
// allocates a type id for the dummy type, which doesn't matter.
namespace detail {
template <class T>
class _guard_long_unique_dummy final {};
template <class T>
using _guard_long_unique = std::conditional_t<
std::is_same<long, int32_t>::value || std::is_same<long, int64_t>::value,
_guard_long_unique_dummy<T>,
T>;
} // namespace detail
CAFFE_DECLARE_KNOWN_TYPE(detail::_guard_long_unique<long>);
CAFFE_DECLARE_KNOWN_TYPE(detail::_guard_long_unique<std::vector<long>>)
CAFFE_DECLARE_KNOWN_TYPE(float*)
CAFFE_DECLARE_KNOWN_TYPE(at::Half*)
} // namespace caffe2
|