1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
|
from caffe2.python import core
from hypothesis import given
import caffe2.python.hypothesis_test_util as hu
import hypothesis.strategies as st
import numpy as np
class TestATen(hu.HypothesisTestCase):
@given(inputs=hu.tensors(n=2), **hu.gcs)
def test_add(self, inputs, gc, dc):
op = core.CreateOperator(
"ATen",
["X", "Y"],
["Z"],
operator="add")
def ref(X, Y):
return [X + Y]
self.assertReferenceChecks(gc, op, inputs, ref)
@given(inputs=hu.tensors(n=2, dtype=np.float16), **hu.gcs_gpu_only)
def test_add_half(self, inputs, gc, dc):
op = core.CreateOperator(
"ATen",
["X", "Y"],
["Z"],
operator="add")
def ref(X, Y):
return [X + Y]
self.assertReferenceChecks(gc, op, inputs, ref)
@given(inputs=hu.tensors(n=1), **hu.gcs)
def test_pow(self, inputs, gc, dc):
op = core.CreateOperator(
"ATen",
["S"],
["Z"],
operator="pow", exponent=2.0)
def ref(X):
return [np.square(X)]
self.assertReferenceChecks(gc, op, inputs, ref)
@given(x=st.integers(min_value=2, max_value=8), **hu.gcs)
def test_sort(self, x, gc, dc):
inputs = [np.random.permutation(x)]
op = core.CreateOperator(
"ATen",
["S"],
["Z", "I"],
operator="sort")
def ref(X):
return [np.sort(X), np.argsort(X)]
self.assertReferenceChecks(gc, op, inputs, ref)
@given(inputs=hu.tensors(n=1), **hu.gcs)
def test_sum(self, inputs, gc, dc):
op = core.CreateOperator(
"ATen",
["S"],
["Z"],
operator="sum")
def ref(X):
return [np.sum(X)]
self.assertReferenceChecks(gc, op, inputs, ref)
@given(**hu.gcs)
def test_index_uint8(self, gc, dc):
# Indexing with uint8 is deprecated, but we need to provide backward compatibility for some old models exported through ONNX
op = core.CreateOperator(
"ATen",
['self', 'mask'],
["Z"],
operator="index")
def ref(self, mask):
return (self[mask.astype(np.bool_)],)
tensor = np.random.randn(2, 3, 4).astype(np.float32)
mask = np.array([[1, 0, 0], [1, 1, 0]]).astype(np.uint8)
self.assertReferenceChecks(gc, op, [tensor, mask], ref)
@given(**hu.gcs)
def test_index_put(self, gc, dc):
op = core.CreateOperator(
"ATen",
['self', 'indices', 'values'],
["Z"],
operator="index_put")
def ref(self, indices, values):
self[indices] = values
return (self,)
tensor = np.random.randn(3, 3).astype(np.float32)
mask = np.array([[True, True, True], [True, False, False], [True, True, False]])
values = np.random.randn(6).astype(np.float32)
self.assertReferenceChecks(gc, op, [tensor, mask, values], ref)
@given(**hu.gcs)
def test_unique(self, gc, dc):
op = core.CreateOperator(
"ATen",
['self'],
["output"],
sorted=True,
return_inverse=True,
# return_counts=False,
operator="_unique")
def ref(self):
index, _ = np.unique(self, return_index=False, return_inverse=True, return_counts=False)
return (index,)
tensor = np.array([1, 2, 6, 4, 2, 3, 2])
print(ref(tensor))
self.assertReferenceChecks(gc, op, [tensor], ref)
if __name__ == "__main__":
import unittest
unittest.main()
|