1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
#!/bin/env python3
# Copyright (c) 2016-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
import sys
import yaml
import argparse
import os
from copy import deepcopy
from typing import Dict, List, Set
parser = argparse.ArgumentParser()
parser.add_argument("--template_dir", default=".", help="where template.h is")
parser.add_argument("--yaml_dir", default="aten/src/ATen/ATen",
help="where ATen yaml files are")
parser.add_argument("--output_prefix", default="", help="")
parser.add_argument(
"--install_dir", default=".", help="where to put generated file")
parser.add_argument("--aten_root", default="", help="root directory of aten")
args, _ = parser.parse_known_args()
if args.aten_root:
if not os.path.exists(args.aten_root):
raise ValueError('aten_root ({}) does not exist'.format(
args.aten_root))
sys.path.insert(0, os.path.join(args.aten_root, '..'))
from torchgen.code_template import CodeTemplate as CT
else:
from torchgen.code_template import CodeTemplate as CT
OP_TEMPLATE = CT.from_file(
os.path.join(args.template_dir, 'aten_op_template.h'))
try:
# use faster C loader if available
from yaml import CSafeLoader as Loader
except ImportError:
from yaml import SafeLoader as Loader # type: ignore[misc]
def write(filename, s):
with open(filename, "w") as f:
f.write(s)
def read(filename):
with open(filename, "r") as f:
return f.read()
def value_has_tensors(v):
# Sparse shouldn't appear in public API, seems to be temporary bug
return "Tensor" in v['dynamic_type'] and "Sparse" not in v['dynamic_type']
def value_is_tensor_type(v):
return value_has_tensors(v) and v['dynamic_type'] not in TENSORLIST_TYPE
TENSORLIST_TYPE = [
'at::TensorList',
'const at::ITensorListRef &',
'const c10::List<c10::optional<at::Tensor>> &',
]
# for each aten type, how do we handle a return value of that type?
RETURN_MAP = {
'at::Tensor': 'assignTo(Output(${offset}),${output});',
'at::Scalar': 'assignTo(Output(${offset}),${output}.type(), ${output});',
'bool': 'assignToValue<int64_t>(Output(${offset}),${output});',
'int64_t': 'assignToValue<int64_t>(Output(${offset}),${output});',
'::std::vector<at::Tensor>': 'assignListStartingAt(${offset}, ${output});',
}
# for each non-Tensor aten argument, how to we read it from caffe2's
# attribute list. Most of these call runtime functions defined in the
# template class.
ARGUMENT_MAP = {
'const at::Scalar &': 'at::Scalar ${arg} = readScalarAttribute("${arg}");',
'bool': 'bool ${arg} = readAttribute<int64_t>("${arg}");',
'int': 'int ${arg} = readAttribute<int64_t>("${arg}");',
'double': 'double ${arg} = readAttribute<float>("${arg}");',
'int64_t': 'int64_t ${arg} = readAttribute<int64_t>("${arg}");',
'at::IntArrayRef': 'auto ${arg} = readIntArrayRef("${arg}");',
'::std::array<bool,2>': 'auto ${arg} = readBoolMask<2>("${arg}");',
'::std::array<bool,3>': 'auto ${arg} = readBoolMask<3>("${arg}");',
}
# for BC reasons we want to route some of the functions to different
# implementations
SPECIAL_IMPLEMENTATIONS = {
'index': 'internal::index_with_uint8_handling',
}
def expand(o):
num_defaults = sum(1 if 'default' in arg else 0 for arg in o['arguments'])
results = [o]
for i in range(0, num_defaults):
# last num_default values should be default
assert('default' in o['arguments'][-(i + 1)])
v = deepcopy(o)
v['arguments'] = v['arguments'][:-(i + 1)]
results.append(v)
return results
# filter the list of declarations removing things we cannot support
def supports(o, factory_methods):
# Ignore all families (!) of functions that have TensorOptions (i.e. tensor factory methods).
if o['name'] in factory_methods:
if factory_methods[o['name']] == 0:
print("Skipping {} because it is a factory method".format(o['name']))
factory_methods[o['name']] += 1
return False
# skip all in-place operators for now since aten cannot Resize
# caffe2 memory inside an operator
if o['inplace']:
return False
# _out variants also work in-place on arguments taken as destinations
# we also cannot handle these because aten cannot resize caffe2 Tensors
if "_out" in o['name']:
return False
# skip if no return, previously it is 'void'
if len(o['returns']) == 0:
return False
# skip return types we cannot handle
for ret in o['returns']:
if not value_has_tensors(ret) and ret['type'] not in RETURN_MAP:
print("Skipping {} Because of Ret: {} ({})".format(
o['name'], ret['type'], ret['dynamic_type']))
return False
# skip arguments we cannot handle
for arg in o['arguments']:
if not value_has_tensors(arg) and arg['type'] not in ARGUMENT_MAP:
print("Skipping {} Because of Arg: {} ({}) ".format(
o['name'], arg['type'], arg['dynamic_type']))
return False
return True
# template for each potential operator.
# each operator has an integer 'key' associated with it, and
# a lambda that defines the operator
# non-tensor attributes are created in ${initialization}
# and then saved as arguments to the lambda
# Inputs/Outputs are read inside the lambda
#
# each implementation is defined in a separate method annotated with
# C10_NOINLINE to avoid inlining into the ATenOp constructor, which would
# trigger pathological compile times.
IMPLEMENTATION_TEMPLATE = CT("""\
C10_NOINLINE void implementation_${key}() { // ${name}
${initialization}
run_op = [=] {
at::AutoDispatchBelowAutograd guard;
${statements}
auto the_result = ${invocation};
${assignments}
return true;
};
}
""")
CASE_TEMPLATE = CT("""\
case ${key}: // ${name}
implementation_${key}();
break;
""")
ASSIGN_CHECK_SIZE_TEMPLATE = CT("""\
if(OutputSize() > ${offset}) {${assignment}}
""")
def get_output(o, i):
if len(o['returns']) == 1:
return 'the_result'
else:
return '::std::get<{}>(the_result)'.format(i)
def attribute_names(o):
return sorted([a['name'] for a in o['arguments'] if not value_has_tensors(a)])
def required_attribute_names(o):
return sorted([a['name'] for a in o['arguments'] if not value_has_tensors(a) and 'default' not in a])
def self_as_first_argument(arguments):
return ([a for a in arguments if a['name'] == 'self'] +
[a for a in arguments if a['name'] != 'self'])
def get_num_inputs(o):
args = 0
for a in o['arguments']:
if a['type'] in TENSORLIST_TYPE:
return '*'
elif value_has_tensors(a):
args += 1
return str(args)
def find_factory_methods(decls):
factory_methods = {}
for o in decls:
if any(arg['dynamic_type'] == 'at::TensorOptions' for arg in o['arguments']):
factory_methods[o['name']] = 0
return factory_methods
def emit_assignments(o, env):
for i, r in enumerate(o['returns']):
t = RETURN_MAP[r['type'] if not value_is_tensor_type(r) else 'at::Tensor']
assignment = CT(t).substitute(env, offset=i, output=get_output(o, i))
check_size_assignment = ASSIGN_CHECK_SIZE_TEMPLATE.substitute(env, offset=i, assignment=assignment)
env['assignments'].append(check_size_assignment)
if __name__ == '__main__':
decls = yaml.load(read(os.path.join(args.yaml_dir, 'Declarations.yaml')), Loader=Loader)
factory_methods = find_factory_methods(decls)
filtered = [expanded for o in decls for expanded in expand(o) if supports(expanded, factory_methods)]
top_env: Dict[str, List] = {
'mappings': [],
'implementations': [],
'cases': [],
}
seen: Set[str] = set()
key = 0
for o in filtered:
# [DESCRIPTORS]
# each option is associated with a descriptor string that is used
# to figure out which version of an op is being used:
# The format is:
# opname-num_inputs-attribute_1-attribute2
# Example:
# lerp-2-weight
# the operator lerp takes 2 arguments and has the attribute weight
attr_names = attribute_names(o)
num_inputs = get_num_inputs(o)
descriptor = '-'.join([o['name']] + attr_names + [num_inputs])
if descriptor in seen:
continue
seen.add(descriptor)
# map from descriptor string to the integer key in the switch statements
# that initializes the operators
top_env['mappings'].append('{{ "{}", {} }},'.format(descriptor, key))
env = {
'name': o['name'],
'statements': [],
'arguments': [],
'assignments': [],
'initialization': [],
'key': str(key),
}
if 'namespace' not in o['method_of'] and 'Tensor' not in o['method_of']:
# methods on type like 'ones' or 'zeros' always take a
# string attribute that is translated into the at::Type object
# e.g. "Float" is at::kFloat
assert('Type' in o['method_of'])
static_tensor_inputs = sum(arg['type'] not in TENSORLIST_TYPE and value_is_tensor_type(arg) for arg in o['arguments'])
has_tensorlist = any(arg['type'] in TENSORLIST_TYPE for arg in o['arguments'])
if has_tensorlist:
tensorlist_idx = [i for i, arg in enumerate(o['arguments']) if arg['type'] in TENSORLIST_TYPE][0]
real_inputs = 0
for i, arg in enumerate(o['arguments']):
env['arguments'].append(arg['name'])
# Pretend the flat argument list is a stack where the end is the top.
view_length = 'InputSize()' if has_tensorlist and i < tensorlist_idx else static_tensor_inputs
if arg['type'] == 'at::TensorList' or arg['type'] == 'const at::ITensorListRef &':
# NOTE: do not advance real_inputs here. After this we will
# switch to indexing the "stack" from the end
env['statements'].append(
'auto {} = peekSlice({}, InputSize() - {}, InputSize());'
.format(arg['name'], real_inputs, static_tensor_inputs))
elif arg['type'] == 'const c10::List<c10::optional<at::Tensor>> &':
# NOTE: do not advance real_inputs here. After this we will
# switch to indexing the "stack" from the end
env['statements'].append(
'auto {} = peekSliceOptionals({}, InputSize() - {}, InputSize());'
.format(arg['name'], real_inputs, static_tensor_inputs))
elif value_is_tensor_type(arg):
# load tensor inputs from Caffe2
env['statements'].append(
'auto {} = peek({}, {});'.format(arg['name'], real_inputs, view_length))
real_inputs += 1
else:
init = CT(ARGUMENT_MAP[arg['type']]).substitute(env, arg=arg['name'])
env['initialization'].append(init)
emit_assignments(o, env)
if o['name'] in SPECIAL_IMPLEMENTATIONS:
env['invocation'] = "{}({})".format(SPECIAL_IMPLEMENTATIONS[o['name']], ','.join(env['arguments']))
elif 'namespace' in o['method_of']:
env['invocation'] = CT("at::${name}(${arguments})").substitute(env)
else:
assert('Tensor' in o['method_of'])
env['invocation'] = "self.{}({})".format(
o['name'], ', '.join(env['arguments'][1:]))
top_env['implementations'].append(IMPLEMENTATION_TEMPLATE.substitute(env))
top_env['cases'].append(CASE_TEMPLATE.substitute(env))
key += 1
write(os.path.join(args.install_dir, args.output_prefix + "aten_op.h"), OP_TEMPLATE.substitute(top_env))
|