1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
|
#ifndef CAFFE2_OPERATORS_INT8_DEQUANTIZE_OP_H_
#define CAFFE2_OPERATORS_INT8_DEQUANTIZE_OP_H_
#include <fbgemm/FbgemmConvert.h>
#include "caffe2/core/context.h"
#include "caffe2/core/operator.h"
#include "caffe2/core/tensor_int8.h"
#include "caffe2/operators/quantized/int8_utils.h"
C10_DECLARE_bool(caffe2_fbgemm_fake_fp16_clamp);
namespace caffe2 {
namespace int8 {
namespace {
void Int8DequantizeNNPI(
const uint8_t* in,
float* out,
const int64_t N,
const float X_scale,
const int32_t X_offset) {
float X_scale_fp32 = 1.0f / X_scale;
for (const auto i : c10::irange(N)) {
out[i] = (float)(static_cast<int32_t>(in[i]) - X_offset) / X_scale_fp32;
}
} // namespace
} // namespace
class Int8DequantizeNNPIOp final : public Operator<CPUContext> {
public:
using Operator<CPUContext>::Operator;
bool RunOnDevice() override {
const auto& X = Inputs()[0]->template Get<Int8TensorCPU>();
auto* Y = Output(0, X.t.sizes(), at::dtype<float>());
int32_t X_offset = X.zero_point;
auto X_scale = X.scale;
Int8DequantizeNNPI(
X.t.data<uint8_t>(),
Y->mutable_data<float>(),
X.t.numel(),
X_scale,
X_offset);
// UsingOneOverScale_);
return true;
}
};
} // namespace int8
} // namespace caffe2
#endif // CAFFE2_OPERATORS_INT8_DEQUANTIZE_OP_H_
|