1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
import numpy as np
import unittest
import caffe2.python.fakelowp.init_shared_libs # noqa
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core
from caffe2.python import workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial
import datetime
core.GlobalInit(["caffe2", "--glow_global_fp16=1",
"--glow_global_fused_scale_offset_fp16=1",
"--glow_global_force_sls_fp16_accum=1"])
GLOW_LOWERED_BATCHNORM = False
def reference_spatialbn_test16(X, scale, bias, mean, var, epsilon, order):
X = X.astype(np.float16)
scale = scale.astype(np.float16)
bias = bias.astype(np.float16)
mean = mean.astype(np.float16)
# var = var.astype(np.float16)
assert(order == "NCHW")
scale = scale[np.newaxis, :, np.newaxis, np.newaxis]
bias = bias[np.newaxis, :, np.newaxis, np.newaxis]
mean = mean[np.newaxis, :, np.newaxis, np.newaxis]
var = var[np.newaxis, :, np.newaxis, np.newaxis]
Y = ((X - mean) * (scale / np.sqrt(var + epsilon).astype(np.float16))) + bias
return Y.astype(np.float32)
# Test the lowered BN op
class BatchnormTest(serial.SerializedTestCase):
# TODO: using hypothesis seed, sweep dimensions
@given(seed=st.integers(0, 65535),
size=st.integers(2, 30),
input_channels=st.integers(2, 40),
batch_size=st.integers(2, 20))
@settings(deadline=datetime.timedelta(seconds=10))
def test_bn(self, seed, size, input_channels, batch_size):
workspace.ResetWorkspace()
np.random.seed(seed)
order = "NCHW"
epsilon = 1e-3
pred_net = caffe2_pb2.NetDef()
pred_net.name = "pred"
pred_net.external_input.extend(["X", "scale", "bias", "mean", "var"])
pred_net.external_output.append("Y")
pred_net.op.add().CopyFrom(
core.CreateOperator(
"SpatialBN",
["X", "scale", "bias", "mean", "var"],
["Y"],
order=order,
is_test=True,
epsilon=epsilon
)
)
if GLOW_LOWERED_BATCHNORM:
refopname = "SpatialBNFakeLoweredFp16NNPI"
else:
refopname = "SpatialBNFakeFp16NNPI"
pred_net_ref = caffe2_pb2.NetDef()
pred_net_ref.name = "pred"
pred_net_ref.external_input.extend(["X", "scale", "bias", "mean", "var"])
pred_net_ref.external_output.append("X")
pred_net_ref.op.add().CopyFrom(
core.CreateOperator(
refopname,
["X", "scale", "bias", "mean", "var"],
["Y"],
order=order,
is_test=True,
epsilon=epsilon
)
)
scale = np.random.rand(input_channels).astype(np.float32) + 0.5
bias = np.random.rand(input_channels).astype(np.float32) - 0.5
mean = np.random.randn(input_channels).astype(np.float32)
var = np.random.rand(input_channels).astype(np.float32) + 0.5
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
workspace.FeedBlob("scale", scale)
workspace.FeedBlob("bias", bias)
workspace.FeedBlob("mean", mean)
workspace.FeedBlob("var", var)
# Use for reference to debug
# Y_np = reference_spatialbn_test16(X, scale, bias, mean, var, epsilon, order)
pred_net_onnxified = onnxifi_caffe2_net(
pred_net,
{"X": [batch_size, input_channels, size, size],
"scale": [input_channels],
"bias": [input_channels],
"mean": [input_channels],
"var": [input_channels]},
debug=True,
adjust_batch=False,
use_onnx=False
)
num_onnxified_ops = sum(
1 if o.type == "Onnxifi" else 0 for o in pred_net_onnxified.op)
np.testing.assert_equal(num_onnxified_ops, 1)
workspace.FeedBlob("X", X)
workspace.CreateNet(pred_net_onnxified)
workspace.CreateNet(pred_net_ref)
workspace.RunNet(pred_net_ref.name)
Y_c2 = workspace.FetchBlob("Y")
workspace.RunNet(pred_net_onnxified.name)
Y_glow = workspace.FetchBlob("Y")
if not np.allclose(Y_glow.astype(np.float16), Y_c2.astype(np.float16)):
diff = np.abs(Y_glow - Y_c2).astype(np.float16)
print_test_debug_info(
"bn",
{
"seed": seed,
"scale": scale,
"bias": bias,
"mean": mean,
"var": var,
"Y_np": Y_c2,
"Y_glow": Y_glow,
"diff": diff,
"rowwise_diff": np.max(np.abs(diff), -1)})
assert(0)
|