File: test_batchnorm_nnpi_fp16.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (143 lines) | stat: -rw-r--r-- 5,058 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import unittest

import caffe2.python.fakelowp.init_shared_libs  # noqa
from hypothesis import given, settings
from hypothesis import strategies as st
from caffe2.proto import caffe2_pb2
from caffe2.python import core
from caffe2.python import workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial
import datetime

core.GlobalInit(["caffe2", "--glow_global_fp16=1",
                 "--glow_global_fused_scale_offset_fp16=1",
                 "--glow_global_force_sls_fp16_accum=1"])

GLOW_LOWERED_BATCHNORM = False


def reference_spatialbn_test16(X, scale, bias, mean, var, epsilon, order):
    X = X.astype(np.float16)
    scale = scale.astype(np.float16)
    bias = bias.astype(np.float16)
    mean = mean.astype(np.float16)
    # var = var.astype(np.float16)
    assert(order == "NCHW")

    scale = scale[np.newaxis, :, np.newaxis, np.newaxis]
    bias = bias[np.newaxis, :, np.newaxis, np.newaxis]
    mean = mean[np.newaxis, :, np.newaxis, np.newaxis]
    var = var[np.newaxis, :, np.newaxis, np.newaxis]
    Y = ((X - mean) * (scale / np.sqrt(var + epsilon).astype(np.float16))) + bias
    return Y.astype(np.float32)


# Test the lowered BN op
class BatchnormTest(serial.SerializedTestCase):
    # TODO: using hypothesis seed, sweep dimensions
    @given(seed=st.integers(0, 65535),
           size=st.integers(2, 30),
           input_channels=st.integers(2, 40),
           batch_size=st.integers(2, 20))
    @settings(deadline=datetime.timedelta(seconds=10))
    def test_bn(self, seed, size, input_channels, batch_size):
        workspace.ResetWorkspace()
        np.random.seed(seed)

        order = "NCHW"
        epsilon = 1e-3

        pred_net = caffe2_pb2.NetDef()
        pred_net.name = "pred"
        pred_net.external_input.extend(["X", "scale", "bias", "mean", "var"])
        pred_net.external_output.append("Y")
        pred_net.op.add().CopyFrom(
            core.CreateOperator(
                "SpatialBN",
                ["X", "scale", "bias", "mean", "var"],
                ["Y"],
                order=order,
                is_test=True,
                epsilon=epsilon
            )
        )

        if GLOW_LOWERED_BATCHNORM:
            refopname = "SpatialBNFakeLoweredFp16NNPI"
        else:
            refopname = "SpatialBNFakeFp16NNPI"

        pred_net_ref = caffe2_pb2.NetDef()
        pred_net_ref.name = "pred"
        pred_net_ref.external_input.extend(["X", "scale", "bias", "mean", "var"])
        pred_net_ref.external_output.append("X")
        pred_net_ref.op.add().CopyFrom(
            core.CreateOperator(
                refopname,
                ["X", "scale", "bias", "mean", "var"],
                ["Y"],
                order=order,
                is_test=True,
                epsilon=epsilon
            )
        )

        scale = np.random.rand(input_channels).astype(np.float32) + 0.5
        bias = np.random.rand(input_channels).astype(np.float32) - 0.5
        mean = np.random.randn(input_channels).astype(np.float32)
        var = np.random.rand(input_channels).astype(np.float32) + 0.5
        X = np.random.rand(
            batch_size, input_channels, size, size).astype(np.float32) - 0.5

        workspace.FeedBlob("scale", scale)
        workspace.FeedBlob("bias", bias)
        workspace.FeedBlob("mean", mean)
        workspace.FeedBlob("var", var)

        # Use for reference to debug
        # Y_np = reference_spatialbn_test16(X, scale, bias, mean, var, epsilon, order)

        pred_net_onnxified = onnxifi_caffe2_net(
            pred_net,
            {"X": [batch_size, input_channels, size, size],
             "scale": [input_channels],
             "bias": [input_channels],
             "mean": [input_channels],
             "var": [input_channels]},
            debug=True,
            adjust_batch=False,
            use_onnx=False
        )
        num_onnxified_ops = sum(
            1 if o.type == "Onnxifi" else 0 for o in pred_net_onnxified.op)
        np.testing.assert_equal(num_onnxified_ops, 1)

        workspace.FeedBlob("X", X)

        workspace.CreateNet(pred_net_onnxified)
        workspace.CreateNet(pred_net_ref)

        workspace.RunNet(pred_net_ref.name)
        Y_c2 = workspace.FetchBlob("Y")

        workspace.RunNet(pred_net_onnxified.name)
        Y_glow = workspace.FetchBlob("Y")

        if not np.allclose(Y_glow.astype(np.float16), Y_c2.astype(np.float16)):
            diff = np.abs(Y_glow - Y_c2).astype(np.float16)
            print_test_debug_info(
                "bn",
                {
                    "seed": seed,
                    "scale": scale,
                    "bias": bias,
                    "mean": mean,
                    "var": var,
                    "Y_np": Y_c2,
                    "Y_glow": Y_glow,
                    "diff": diff,
                    "rowwise_diff": np.max(np.abs(diff), -1)})
            assert(0)