File: test_deq_swish_quant_nnpi.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (159 lines) | stat: -rw-r--r-- 5,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
import caffe2.python.fakelowp.init_shared_libs  # noqa
from caffe2.python import core, workspace
from caffe2.python.onnx.onnxifi import onnxifi_caffe2_net
from caffe2.python.fakelowp.test_utils import print_test_debug_info
import caffe2.python.serialized_test.serialized_test_util as serial
import datetime
from hypothesis import settings

core.GlobalInit(["caffe2", "--caffe2_log_level=-3", "--glow_global_fp16=1"])

class DeqSwishQuantTest(serial.SerializedTestCase):
    def _get_scale_zp(self, tensor):
        tensor_max = np.max(tensor)
        tensor_min = min(0, np.min(tensor))
        scale = np.float32(np.float16((tensor_max - tensor_min) / 255.))
        zero_point = -tensor_min / scale
        zero_point = int(round(np.clip(zero_point, 0, 255.0)))
        return (scale, zero_point)

    def _sigmoid(self, x):
        return 1. / (1. + np.exp(np.float32(-x)))

    def _swish(self, x):
        return np.float32(x) * self._sigmoid(x)

    @settings(deadline=datetime.timedelta(seconds=10))
    def test_swish_int8(self):
        np.random.seed(0)
        workspace.ResetWorkspace()
        n = 256

        X_fp32 = np.linspace(-20.5, 8., num=n).astype(np.float32).reshape(1, n)
        Y_fp32 = self._swish(X_fp32)
        X_scale, X_zero_point = self._get_scale_zp(X_fp32)
        Y_scale, Y_zero_point = self._get_scale_zp(Y_fp32)
        W_fp32 = np.identity(n, dtype=np.float32)
        b_fp32 = np.zeros((n,), dtype=np.float32)

        workspace.FeedBlob("X", X_fp32)
        workspace.FeedBlob("W", W_fp32)
        workspace.FeedBlob("b", b_fp32)

        workspace.RunOperatorOnce(
            core.CreateOperator(
                "Int8FCPackWeight",
                ["W"],
                ["W_int8"],
                engine="DNNLOWP",
                save_unpacked_weights=True,
                in_scale=X_scale,
            )
        )

        ref_net1 = core.Net("net")
        ref_net1.Int8QuantizeNNPI(
            ["X"],
            ["X_int8"],
            Y_scale=X_scale,
            Y_zero_point=X_zero_point
        )
        ref_net1.Int8FCFakeAcc32NNPI(
            ["X_int8", "W_int8", "b"],
            ["U_int8"],
            Y_scale=X_scale,
            Y_zero_point=X_zero_point,
        )
        ref_net1.SwishFakeInt8NNPI(
            ["U_int8"],
            ["Y"],
            X_scale=X_scale,
            X_zero_point=X_zero_point,
            Y_scale=Y_scale,
            Y_zero_point=Y_zero_point
        )
        ref_net1.Proto().external_output.append("Y")

        ref_net = core.Net("net")
        ref_net.Int8QuantizeNNPI(
            ["X"],
            ["X_int8"],
            Y_scale=X_scale,
            Y_zero_point=X_zero_point
        )
        ref_net.Int8FCFakeAcc32NNPI(
            ["X_int8", "W_int8", "b"],
            ["U_int8"],
            Y_scale=X_scale,
            Y_zero_point=X_zero_point,
        )
        ref_net.Int8DequantizeNNPI(
            ["U_int8"],
            ["U_fp16"],
            UsingOneOverScale=False
        )
        ref_net.SwishFakeFp16NNPI(
            ["U_fp16"],
            ["Y_fp16"]
        )
        ref_net.Int8QuantizeNNPI(
            ["Y_fp16"],
            ["Y"],
            Y_scale=Y_scale,
            Y_zero_point=Y_zero_point
        )
        ref_net.Proto().external_output.append("Y")

        # run ref_net
        workspace.RunNetOnce(ref_net1)
        Y_fbgemm = workspace.FetchInt8Blob("Y")

        # run onnxifi net
        ref_net.Proto().op[0].type = "Int8Quantize"
        ref_net.Proto().op[1].type = "Int8FC"
        ref_net.Proto().op[2].type = "Int8Dequantize"
        ref_net.Proto().op[3].type = "Swish"
        ref_net.Proto().op[4].type = "Int8Quantize"
        net_onnxified = onnxifi_caffe2_net(
            ref_net.Proto(),
            {},
            debug=True,
            adjust_batch=False,
            use_onnx=False,
            weight_names=["W_int8", "b"],
        )
        num_onnxified_ops = sum(
            1 if o.type == "Onnxifi" else 0 for o in net_onnxified.op
        )
        np.testing.assert_equal(num_onnxified_ops, 1)
        # TODO: add an assertion to check the optimized net
        # fused Dequantize->Swish->Quantize to QuantizedSwish
        workspace.CreateNet(net_onnxified)
        workspace.RunNet(net_onnxified.name)
        Y_glow = workspace.FetchInt8Blob("Y")
        U_int8 = workspace.FetchInt8Blob("U_int8")

        diff_Y = np.abs(Y_glow.data - Y_fbgemm.data)

        num_mismatches = np.count_nonzero(diff_Y)
        max_diff = np.max(diff_Y)
        if max_diff > 0 or Y_glow.scale != Y_fbgemm.scale or \
           Y_glow.zero_point != Y_fbgemm.zero_point:
            print_test_debug_info(
                "QuantizedSwish",
                {
                    "X": X_fp32,
                    "X_scale": X_scale,
                    "X_zero_point": X_zero_point,
                    "Y_scale": Y_scale,
                    "Y_zero_point": Y_zero_point,
                    "U_int8": U_int8,
                    "Y_fbgemm": Y_fbgemm,
                    "Y_glow": Y_glow,
                    "diff": diff_Y,
                    "max_diff": max_diff,
                    "num_mismatches": num_mismatches,
                },
            )
            assert 0