1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/operator.h"
#include "caffe2/contrib/nccl/cuda_nccl_gpu.h"
namespace caffe2 {
nccl::NCCLExecution getNCCLElements(
OperatorBase* op,
const CUDAContext& context) {
// We either do an N-N op, or an N-1 op.
CAFFE_ENFORCE(op->InputSize() == op->OutputSize() || op->OutputSize() == 1);
nccl::NCCLExecution ex;
ex.stream_gpu_id = context.device_id();
ex.stream = context.cuda_stream();
ex.root = op->template GetSingleArgument<int>("root", 0);
ex.elements.resize(op->InputSize());
for (auto i = 0; i < op->InputSize(); ++i) {
auto& el = ex.elements[i];
el.src = &(op->Input<Tensor>(i, CUDA));
if (op->OutputSize() == 1) {
// Reduce op
if (i == ex.root) {
el.dst = op->Output<Tensor>(0, CUDA);
}
} else if (i < op->OutputSize()) {
el.dst = op->Output<Tensor>(i, CUDA);
}
// TODO - expensive (>1ms) - cache these.
el.device = GetGPUIDForPointer(op->Input<Tensor>(i, CUDA).raw_data());
}
return ex;
}
namespace {
// Check if all inputs are float
template <typename T>
bool AllInputsAre(OperatorBase* op) {
for (auto i = 0; i < op->InputSize(); ++i) {
if (op->Input<Tensor>(i, CUDA).IsType<T>()) {
continue;
} else {
return false;
}
}
return true;
}
// Manual count of all instantiated NCCL ops.
// If this drops to zero after destructing the last NCCL op,
// it means we can safely destroy all lazily created NCCL contexts.
std::atomic<int> kNCCLOpCounter(0);
}; // namespace
class NCCLBaseOp : public Operator<CUDAContext> {
public:
using Operator::Operator;
NCCLBaseOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CUDAContext>(operator_def, ws) {
kNCCLOpCounter++;
}
~NCCLBaseOp() {
if (--kNCCLOpCounter == 0) {
nccl::destroyContexts();
}
}
};
class NCCLAllreduceOp final : public NCCLBaseOp {
public:
using NCCLBaseOp::NCCLBaseOp;
bool RunOnDevice() override {
if (InputSize() == 1)
return true;
if (AllInputsAre<float>(this)) {
nccl::NCCL<float>::AllReduce(getNCCLElements(this, context_));
return true;
} else if (AllInputsAre<at::Half>(this)) {
nccl::NCCL<at::Half>::AllReduce(getNCCLElements(this, context_));
return true;
} else {
return false;
}
}
static std::vector<TensorShape> ShapeInference(
const OperatorDef& def,
const std::vector<TensorShape>& in) {
auto n_outputs = def.output_size();
CAFFE_ENFORCE(
n_outputs == 1 || n_outputs == in.size(),
"NCCLAllreduce only supports N-1 or N-N reductions");
for (auto i = 0; i < in.size(); i++) {
CAFFE_ENFORCE(
in[0].dims_size() == in[i].dims_size(),
"NCCLAllreduce requires inputs of same dimension");
for (auto j = 0; j < in[0].dims_size(); j++) {
CAFFE_ENFORCE(
in[0].dims(j) == in[i].dims(j),
"NCCLAllreduce requires inputs to be of same shape");
}
}
std::vector<TensorShape> out(n_outputs);
for (auto i = 0; i < out.size(); i++) {
out[i] = in[0];
}
return out;
}
static struct OpSchema::Cost CostInference(
const OperatorDef& def,
const vector<TensorShape>& inputs) {
CAFFE_ENFORCE_GE(inputs.size(), 1, "Conv requires at least 1 input");
const TensorShape X0 = inputs[0];
const auto nElem = nElemFromDim(inputs[0]);
struct OpSchema::Cost c;
c.flops = (inputs.size() - 1) * nElem;
c.bytes_read = inputs.size() * nElem;
c.bytes_written = def.output_size() * nElem;
c.params_bytes = 0;
return c;
}
};
class NCCLBroadcastOp final : public NCCLBaseOp {
public:
using NCCLBaseOp::NCCLBaseOp;
bool RunOnDevice() override {
if (InputSize() == 1)
return true;
if (AllInputsAre<float>(this)) {
nccl::NCCL<float>::Broadcast(getNCCLElements(this, context_));
return true;
} else if (AllInputsAre<at::Half>(this)) {
nccl::NCCL<at::Half>::Broadcast(getNCCLElements(this, context_));
return true;
} else {
return false;
}
}
};
class NCCLReduceOp final : public NCCLBaseOp {
public:
using NCCLBaseOp::NCCLBaseOp;
bool RunOnDevice() override {
if (InputSize() == 1)
return true;
const auto& ex = getNCCLElements(this, context_);
if (AllInputsAre<float>(this)) {
nccl::NCCL<float>::Reduce(ex);
return true;
} else if (AllInputsAre<at::Half>(this)) {
nccl::NCCL<at::Half>::Reduce(ex);
return true;
} else {
return false;
}
}
};
class NCCLAllGatherOp final : public NCCLBaseOp {
public:
using NCCLBaseOp::NCCLBaseOp;
bool RunOnDevice() override {
if (InputSize() == 1)
return true;
if (AllInputsAre<float>(this)) {
nccl::NCCL<float>::AllGather(getNCCLElements(this, context_));
return true;
} else if (AllInputsAre<at::Half>(this)) {
nccl::NCCL<at::Half>::AllGather(getNCCLElements(this, context_));
return true;
} else {
return false;
}
}
};
class NCCLReduceScatterOp final : public NCCLBaseOp {
public:
using NCCLBaseOp::NCCLBaseOp;
bool RunOnDevice() override {
if (AllInputsAre<float>(this)) {
nccl::NCCL<float>::ReduceScatter(getNCCLElements(this, context_));
return true;
} else if (AllInputsAre<at::Half>(this)) {
nccl::NCCL<at::Half>::ReduceScatter(getNCCLElements(this, context_));
return true;
} else {
return false;
}
}
};
namespace {
std::pair<std::vector<DeviceOption>, std::vector<DeviceOption>> ncclOpDevInfer(
const OperatorDef& def) {
std::vector<DeviceOption> opt;
for (int i = 0; i < def.input().size(); ++i) {
DeviceOption dev;
dev.set_device_type(1);
dev.set_device_id(i);
opt.push_back(dev);
}
return std::make_pair(opt, opt);
}
REGISTER_CUDA_OPERATOR(NCCLAllreduce, NCCLAllreduceOp);
OPERATOR_SCHEMA(NCCLAllreduce)
.NumInputs(1, C10_COMPILE_TIME_MAX_GPUS)
.NumOutputs(1, C10_COMPILE_TIME_MAX_GPUS)
.CostInferenceFunction(NCCLAllreduceOp::CostInference)
.TensorInferenceFunction(NCCLAllreduceOp::ShapeInference)
.IdenticalTypeAndShape()
.InputsCanCrossDevices()
.AllowOneToOneInplace()
.DeviceInferenceFunction(ncclOpDevInfer);
SHOULD_NOT_DO_GRADIENT(NCCLAllreduce);
REGISTER_CUDA_OPERATOR(NCCLBroadcast, NCCLBroadcastOp);
OPERATOR_SCHEMA(NCCLBroadcast)
.NumInputs(1, C10_COMPILE_TIME_MAX_GPUS)
.NumOutputs(1, C10_COMPILE_TIME_MAX_GPUS)
.IdenticalTypeAndShape()
.InputsCanCrossDevices()
.EnforceOneToOneInplace()
.DeviceInferenceFunction(ncclOpDevInfer);
SHOULD_NOT_DO_GRADIENT(NCCLBroadcast);
REGISTER_CUDA_OPERATOR(NCCLReduce, NCCLReduceOp);
OPERATOR_SCHEMA(NCCLReduce)
.NumInputs(1, C10_COMPILE_TIME_MAX_GPUS)
.NumOutputs(1)
.IdenticalTypeAndShapeOfInput(0)
.InputsCanCrossDevices()
.AllowInplace([](int /*in*/, int out) -> bool { return (out == 0); })
.DeviceInferenceFunction(ncclOpDevInfer);
SHOULD_NOT_DO_GRADIENT(NCCLReduce);
REGISTER_CUDA_OPERATOR(NCCLAllGather, NCCLAllGatherOp);
OPERATOR_SCHEMA(NCCLAllGather)
.NumInputs(1, C10_COMPILE_TIME_MAX_GPUS)
.NumOutputs(1, C10_COMPILE_TIME_MAX_GPUS)
.InputsCanCrossDevices()
.DeviceInferenceFunction(ncclOpDevInfer);
SHOULD_NOT_DO_GRADIENT(NCCLAllGather);
REGISTER_CUDA_OPERATOR(NCCLReduceScatter, NCCLReduceScatterOp);
OPERATOR_SCHEMA(NCCLReduceScatter)
.NumInputs(1, C10_COMPILE_TIME_MAX_GPUS)
.NumOutputs(1, C10_COMPILE_TIME_MAX_GPUS)
.InputsCanCrossDevices()
.DeviceInferenceFunction(ncclOpDevInfer);
SHOULD_NOT_DO_GRADIENT(NCCLReduceScatter);
} // namespace
} // namespace caffe2
|