1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
import unittest
import hypothesis.strategies as st
from hypothesis import given, assume
import numpy as np
import time
import os
from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace, muji, dyndep
import caffe2.python.hypothesis_test_util as hu
np.random.seed(1)
dyndep.InitOpsLibrary('@/caffe2/caffe2/contrib/nccl:nccl_ops')
def gpu_device(i):
device_option = caffe2_pb2.DeviceOption()
device_option.device_type = workspace.GpuDeviceType
device_option.device_id = i
return device_option
def benchmark(ws, net, warmups=5, iters=100):
for _ in range(warmups):
ws.run(net)
plan = core.Plan("plan")
plan.AddStep(core.ExecutionStep("test-step", net, iters))
before = time.time()
ws.run(plan)
after = time.time()
print("Timing network, time taken per-iteration: {:.6f}ms".format((
after - before) / float(iters) * 1000.0))
return after - before
@unittest.skipIf(not workspace.has_cuda_support, "NCCL only on CUDA GPU")
class NCCLOpsTest(hu.HypothesisTestCase):
@given(n=st.integers(min_value=2, max_value=workspace.NumGpuDevices()),
m=st.integers(min_value=1, max_value=1000),
in_place=st.booleans())
def test_nccl_allreduce(self, n, m, in_place):
xs = [np.random.randn(m).astype(np.float32) for i in range(n)]
inputs = [str("x_{}".format(i)) for i in range(n)]
prefix = "" if in_place else "o"
outputs = [str("{}x_{}".format(prefix, i)) for i in range(n)]
op = core.CreateOperator("NCCLAllreduce", inputs, outputs)
input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)}
def allreduce(*args):
assert len(args) == n
output = np.sum(args, axis=0)
return [output for _ in range(n)]
outputs = self.assertReferenceChecks(
hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)],
allreduce, input_device_options)
for output in outputs:
np.testing.assert_array_equal(outputs[0], output)
self.assertEqual(outputs[0].tobytes(), output.tobytes())
@given(n=st.integers(min_value=2, max_value=workspace.NumGpuDevices()),
m=st.integers(min_value=1, max_value=1000),
root=st.integers(min_value=0,
max_value=workspace.NumGpuDevices() - 1))
def test_nccl_broadcast(self, n, m, root):
assume(root < n)
xs = [np.random.randn(m).astype(np.float32) for i in range(n)]
inputs = [str("x_{}".format(i)) for i in range(n)]
op = core.CreateOperator("NCCLBroadcast", inputs, inputs, root=root)
input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)}
def broadcast(*args):
assert len(args) == n
return [args[root] for _ in range(n)]
self.assertReferenceChecks(
hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)],
broadcast, input_device_options)
@given(n=st.integers(min_value=2, max_value=workspace.NumGpuDevices()),
m=st.integers(min_value=1, max_value=1000),
# NCCL Reduce seems to deadlock for non-zero roots.
root=st.integers(min_value=0, max_value=0),
in_place=st.booleans())
def test_nccl_reduce(self, n, m, root, in_place):
assume(in_place is False or root == 0)
xs = [np.random.randn(m).astype(np.float32) for i in range(n)]
inputs = [str("x_{}".format(i)) for i in range(n)]
op = core.CreateOperator(
"NCCLReduce", inputs,
inputs[root] if in_place else b"o", root=root)
input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)}
def reduce(*args):
assert len(args) == n
return [np.sum(args, axis=0)]
self.assertReferenceChecks(
hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)],
reduce, input_device_options)
@given(n=st.integers(min_value=2, max_value=workspace.NumGpuDevices()),
m=st.integers(min_value=1, max_value=1000))
def test_nccl_allgather(self, n, m):
xs = [np.random.randn(m).astype(np.float32) for i in range(n)]
inputs = [str("x_{}".format(i)) for i in range(n)]
outputs = [str("o_{}".format(i)) for i in range(n)]
op = core.CreateOperator("NCCLAllGather", inputs, outputs)
input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)}
def allgather(*args):
assert len(args) == n
return [np.stack(args, axis=0) for _ in range(n)]
outputs = self.assertReferenceChecks(
hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)],
allgather, input_device_options)
for output in outputs:
np.testing.assert_array_equal(outputs[0], output)
self.assertEqual(outputs[0].tobytes(), output.tobytes())
@given(n=st.integers(min_value=2, max_value=workspace.NumGpuDevices()),
m=st.integers(min_value=1, max_value=1000))
def test_nccl_reduce_scatter(self, n, m):
xs = [np.random.randn(n, m).astype(np.float32) for i in range(n)]
inputs = [str("x_{}".format(i)) for i in range(n)]
outputs = [str("o_{}".format(i)) for i in range(n)]
op = core.CreateOperator("NCCLReduceScatter", inputs, outputs)
input_device_options = {n: gpu_device(i) for i, n in enumerate(inputs)}
def reduce_scatter(*args):
assert len(args) == n
reduced = sum(args)
assert len(reduced.shape) > 1
ref = [reduced[i, :] for i in range(n)]
return ref
self.assertReferenceChecks(
hu.gpu_do, op, [xs[i] for i, _ in enumerate(inputs)],
reduce_scatter, input_device_options)
@given(n=st.integers(min_value=2, max_value=workspace.NumGpuDevices()),
m=st.integers(min_value=100000, max_value=100000),
iters=st.integers(min_value=1, max_value=100),
net_type=st.sampled_from(["dag", "async_dag", "simple"]))
def _test_nccl_sync(self, n, m, iters, net_type):
inputs = [str("x_{}".format(i)) for i in range(n)]
extra_inputs = [str("xe_{}".format(i)) for i in range(n)]
net = core.Net("asdf")
net.Proto().type = net_type
net.Proto().num_workers = n
for i in range(n):
net.ConstantFill([], inputs[i], shape=[m], value=0.0,
device_option=gpu_device(i))
net.ConstantFill([], extra_inputs[i], shape=[m], value=1.0,
device_option=gpu_device(i))
for _ in range(iters):
net.Sum([inputs[i], extra_inputs[i]], [inputs[i]],
device_option=gpu_device(i))
net.NCCLReduce(inputs, [inputs[0]], device_option=gpu_device(0))
self.ws.run(net)
np.testing.assert_array_equal(
self.ws.blobs[inputs[0]].fetch(),
np.full(shape=(m,), fill_value=iters * n, dtype=np.float32))
@unittest.skipIf(not os.environ.get("CAFFE2_BENCHMARK"), "Benchmark")
def test_timings(self):
for n in range(2, workspace.NumGpuDevices()):
for in_place in [False, True]:
xs = [np.random.randn(1e7).astype(np.float32)
for i in range(n)]
inputs = [str("x_{}".format(i)) for i in range(n)]
prefix = "" if in_place else "o"
outputs = [str("{}x_{}".format(prefix, i)) for i in range(n)]
net = core.Net("test")
net.NCCLAllreduce(inputs, outputs)
net.RunAllOnGPU()
for i in range(n):
self.ws.create_blob(inputs[i]).feed(xs[i], gpu_device(i))
self.ws.run(net)
net_time = benchmark(self.ws, net)
vanilla = core.Net("vanilla")
muji.Allreduce(vanilla, inputs)
vanilla_time = benchmark(self.ws, vanilla)
print("Speedup for NCCL: {:.2f}".format(
vanilla_time / net_time))
|