1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
|
#include "caffe2/core/common.h"
#ifdef CAFFE2_USE_MKL
#include <mkl.h>
#endif
#include "caffe2/core/context.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/operators/conv_pool_op_base.h"
#include "caffe2/operators/leaky_relu_op.h"
#include "caffe2/utils/cpuid.h"
#include "caffe2/utils/math.h"
#include "nnpack.h"
C10_DEFINE_int(
caffe2_nnpack_num_threads,
1,
"The number of nnpack pthreadpool threads.");
C10_DEFINE_bool(
caffe2_nnpack_use_mkl_num_threads,
true,
"If MKL is built, this sets nnpack to use the same number of threads as "
"MKL does. This overrides caffe2_nnpack_num_threads if set.");
namespace caffe2 {
////////////////////////////////////////////////////////////////////////////////
// Helper Functions
////////////////////////////////////////////////////////////////////////////////
namespace {
bool has_nnpack() {
// nnp_initialize is a noop after the first call so it's safe to invoke it
// repeatedly
auto nnpack_status = nnp_initialize();
return nnpack_status == nnp_status_success;
}
nnp_convolution_algorithm get_nnp_convolution_algorithm(
const std::string& algo) {
if (algo == "AUTO") {
return nnp_convolution_algorithm_auto;
}
if (algo == "WINOGRAD") {
return nnp_convolution_algorithm_wt8x8;
}
if (algo == "FT16") {
return nnp_convolution_algorithm_ft16x16;
}
if (algo == "FT8") {
return nnp_convolution_algorithm_ft8x8;
}
return nnp_convolution_algorithm_auto;
}
nnp_convolution_transform_strategy get_nnp_convolution_transform_strategy(
const std::string& kts) {
if (kts == "BLOCK") {
return nnp_convolution_transform_strategy_block_based;
}
if (kts == "TUPLE") {
return nnp_convolution_transform_strategy_tuple_based;
}
return nnp_convolution_transform_strategy_block_based;
}
////////////////////////////////////////////////////////////////////////////////
// Thread Pool
////////////////////////////////////////////////////////////////////////////////
static pthreadpool_t nnpack_threadpool_ = nullptr;
pthreadpool_t nnpack_threadpool() {
if (nnpack_threadpool_ == nullptr) {
enum nnp_status nnpack_status = nnp_initialize();
CAFFE_ENFORCE(
nnpack_status == nnp_status_success, "NNPack is not supported here!");
int num_threads = FLAGS_caffe2_nnpack_num_threads;
if (FLAGS_caffe2_nnpack_use_mkl_num_threads) {
#ifdef CAFFE2_USE_MKL
num_threads = mkl_get_max_threads();
#else
VLOG(1) << "I am asked to use MKL num of threads for NNPACK but this "
"Caffe2 is not built with MKL. Skipping.";
#endif
}
nnpack_threadpool_ = pthreadpool_create(num_threads);
}
return nnpack_threadpool_;
}
}
////////////////////////////////////////////////////////////////////////////////
// NNPACK Ops
////////////////////////////////////////////////////////////////////////////////
class NNPACKConvOp final : public ConvPoolOpBase<CPUContext> {
public:
NNPACKConvOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<CPUContext>(operator_def, ws),
algo_(get_nnp_convolution_algorithm(
OperatorBase::GetSingleArgument<std::string>("algo", "AUTO"))),
kts_(get_nnp_convolution_transform_strategy(
OperatorBase::GetSingleArgument<std::string>("kts", "TUPLE"))) {
OPERATOR_NEEDS_FEATURE(
this->order_ == StorageOrder::NCHW,
"NNPack only supports NCHW order. Please consider adding "
"TransposeOp with axes=[0, 3, 1, 2] before NNPack Conv.");
OPERATOR_NEEDS_FEATURE(
dilation_h() == 1 && dilation_w() == 1,
"The NNPack convolution does not support dilation yet.");
// NNPACK can be built with avx2 support only and might not be able to run
// on a given machine.
OPERATOR_NEEDS_FEATURE(has_nnpack(), "NNPack can't run here. No AVX2?");
}
bool RunOnDeviceWithOrderNCHW() override {
auto& X = Input(0);
auto& filter = Input(1);
auto& bias = Input(2);
auto* Y = Output(0);
const int N = X.dim32(0), C = X.dim32(1), H = X.dim32(2), W = X.dim32(3);
const int M = filter.dim32(0);
CAFFE_ENFORCE(X.dim() == 4, "Input dim should be 4");
CAFFE_ENFORCE(filter.dim(), 4);
CAFFE_ENFORCE(C % this->group_ == 0, "");
CAFFE_ENFORCE(M % this->group_ == 0, "");
CAFFE_ENFORCE(filter.dim32(1) == C / this->group_, "");
CAFFE_ENFORCE(filter.dim32(2) == this->kernel_h(), "");
CAFFE_ENFORCE(filter.dim32(3) == this->kernel_w(), "");
CAFFE_ENFORCE(bias.numel() == M, "");
ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, filter.dim32(0));
const int oH = Y->dim32(2), oW = Y->dim32(3);
if (N > 1) {
CAFFE_ENFORCE_EQ(
this->stride_h(),
1,
"NNPack only supports stride = 1 when doing batch feedforward");
CAFFE_ENFORCE_EQ(
this->stride_w(),
1,
"NNPack only supports stride = 1 when doing batch feedforward");
}
std::vector<int> pads(
{this->pad_t(), this->pad_b(), this->pad_l(), this->pad_r()});
std::vector<int> stride({this->stride_h(), this->stride_w()});
const size_t input_channels = X.dim32(1);
const size_t output_channels = Y->dim32(1);
const nnp_size input_size = {.width = static_cast<size_t>(X.dim32(3)),
.height = static_cast<size_t>(X.dim32(2))};
// filter is MCHW
const nnp_size kernel_size = {
.width = static_cast<size_t>(filter.dim32(3)),
.height = static_cast<size_t>(filter.dim32(2))};
// pad is tblr
const nnp_padding padding = {.top = static_cast<size_t>(pads[0]),
.right = static_cast<size_t>(pads[3]),
.bottom = static_cast<size_t>(pads[1]),
.left = static_cast<size_t>(pads[2])};
const nnp_size output_subsample = {
.width = static_cast<size_t>(stride[1]),
.height = static_cast<size_t>(stride[0])};
if (N == 1) {
VLOG(1) << "Running inference mode";
for (auto g = 0; g < group_; ++g) {
const auto status = nnp_convolution_inference(
algo_,
kts_,
C / group_,
M / group_,
input_size,
padding,
kernel_size,
output_subsample,
X.template data<float>() + g * H * W * (C / group_),
filter.template data<float>() + filter.numel() / group_ * g,
bias.template data<float>() + bias.numel() / group_ * g,
Y->template mutable_data<float>() + g * oH * oW * (M / group_),
nnpack_threadpool(),
nullptr);
CAFFE_ENFORCE(nnp_status_success == status, "");
}
} else {
VLOG(1) << "Running batched mode";
for (auto g = 0; g < group_; ++g) {
const auto status = nnp_convolution_output(
algo_,
N,
C / group_,
M / group_,
input_size,
padding,
kernel_size,
X.template data<float>() + g * H * W * (C / group_),
filter.template data<float>() + filter.numel() / group_ * g,
bias.template data<float>() + bias.numel() / group_ * g,
Y->template mutable_data<float>() + g * oH * oW * (M / group_),
nnpack_threadpool(),
nullptr);
CAFFE_ENFORCE(nnp_status_success == status, "");
}
}
return true;
}
private:
const nnp_convolution_algorithm algo_;
const nnp_convolution_transform_strategy kts_;
};
class NNPACKMaxPoolOp final : public ConvPoolOpBase<CPUContext> {
public:
NNPACKMaxPoolOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<CPUContext>(operator_def, ws) {
OPERATOR_NEEDS_FEATURE(
this->order_ == StorageOrder::NCHW,
"NNPack only supports NCHW order. Please consider add "
"TransposeOp with axes=[0, 3, 1, 2] before NNPack Conv.");
OPERATOR_NEEDS_FEATURE(
this->kernel_h() == 2, "NNPack only supports MaxPool kernel size 2*2!");
OPERATOR_NEEDS_FEATURE(
this->kernel_w() == 2, "NNPack only supports MaxPool kernel size 2*2!");
OPERATOR_NEEDS_FEATURE(
this->stride_h() == 2, "NNPack only supports MaxPool stride size 2*2!");
OPERATOR_NEEDS_FEATURE(
this->stride_w() == 2, "NNPack only supports MaxPool stride size 2*2!");
OPERATOR_NEEDS_FEATURE(
this->pad_t() == 0,
"NNPack Pooling differs from Caffe2 Pooling when pad > 0!");
OPERATOR_NEEDS_FEATURE(
this->pad_l() == 0,
"NNPack Pooling differs from Caffe2 Pooling when pad > 0!");
OPERATOR_NEEDS_FEATURE(
this->pad_r() == 0,
"NNPack Pooling differs from Caffe2 Pooling when pad > 0!");
OPERATOR_NEEDS_FEATURE(
this->pad_b() == 0,
"NNPack Pooling differs from Caffe2 Pooling when pad > 0!");
// NNPACK can be built with avx2 support only and might not be able to run
// on a given machine.
OPERATOR_NEEDS_FEATURE(has_nnpack(), "NNPack can't run here. No AVX2?");
}
bool RunOnDeviceWithOrderNCHW() override {
auto& X = Input(0);
auto* Y = Output(0);
CAFFE_ENFORCE(X.dim() == 4, "");
const int H = X.dim32(2), W = X.dim32(3);
ConvPoolOpBase<CPUContext>::SetOutputSize(X, Y, X.dim32(1));
std::vector<int> pads(
{this->pad_t(), this->pad_b(), this->pad_l(), this->pad_r()});
std::vector<int> stride({this->stride_h(), this->stride_w()});
std::vector<int> pooling({this->kernel_h(), this->kernel_w()});
// Input X is in NCHW order
const size_t batch_size = X.dim32(0);
const size_t input_channels = X.dim32(1);
const nnp_size input_size = {.width = static_cast<size_t>(X.dim32(3)),
.height = static_cast<size_t>(X.dim32(2))};
// pooling kernel
const nnp_size pooling_size = {.width = static_cast<size_t>(pooling[1]),
.height = static_cast<size_t>(pooling[0])};
// pad is tblr
const nnp_padding padding = {.top = static_cast<size_t>(pads[0]),
.right = static_cast<size_t>(pads[3]),
.bottom = static_cast<size_t>(pads[1]),
.left = static_cast<size_t>(pads[2])};
const nnp_size pooling_stride = {.width = static_cast<size_t>(stride[1]),
.height = static_cast<size_t>(stride[0])};
const auto status = nnp_max_pooling_output(
batch_size,
input_channels,
input_size,
padding,
pooling_size,
pooling_stride,
X.template data<float>(),
Y->template mutable_data<float>(),
nnpack_threadpool());
CAFFE_ENFORCE(nnp_status_success == status, "");
return true;
}
private:
};
class NNPACKReluOp final : public Operator<CPUContext> {
public:
NNPACKReluOp(const OperatorDef& operator_def, Workspace* ws)
: Operator<CPUContext>(operator_def, ws) {
// NNPACK can be built with avx2 support only and might not be able to run
// on a given machine.
OPERATOR_NEEDS_FEATURE(has_nnpack(), "NNPack can't run here. No AVX2?");
}
bool RunOnDevice() override {
auto& X = Input(0);
auto* Y = Output(0);
const auto status = nnp_relu_output(
1,
X.numel(),
X.template data<float>(),
Y->template mutable_data<float>(),
0.0,
nnpack_threadpool());
CAFFE_ENFORCE(nnp_status_success == status, "");
return true;
}
private:
};
class NNPACKLeakyReluOp final : public LeakyReluOp<float, CPUContext> {
public:
NNPACKLeakyReluOp(const OperatorDef& operator_def, Workspace* ws)
: LeakyReluOp<float, CPUContext>(operator_def, ws) {
// NNPACK can be built with avx2 support only and might not be able to run
// on a given machine.
OPERATOR_NEEDS_FEATURE(has_nnpack(), "NNPack can't run here. No AVX2?");
}
bool RunOnDevice() override {
auto& X = Input(0);
auto* Y = Output(0);
const auto status = nnp_relu_output(
1,
X.numel(),
X.template data<float>(),
Y->template mutable_data<float>(),
alpha_,
nnpack_threadpool());
CAFFE_ENFORCE(nnp_status_success == status, "");
return true;
}
private:
};
REGISTER_CPU_OPERATOR_WITH_ENGINE(Conv, NNPACK, NNPACKConvOp);
REGISTER_CPU_OPERATOR_WITH_ENGINE(MaxPool, NNPACK, NNPACKMaxPoolOp);
REGISTER_CPU_OPERATOR_WITH_ENGINE(Relu, NNPACK, NNPACKReluOp);
REGISTER_CPU_OPERATOR_WITH_ENGINE(LeakyRelu, NNPACK, NNPACKLeakyReluOp);
} // namespace caffe2
|