1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
import unittest
import hypothesis.strategies as st
from hypothesis import given, assume, settings
import numpy as np
import time
import os
from caffe2.python import core, dyndep
import caffe2.python.hypothesis_test_util as hu
dyndep.InitOpsLibrary("@/caffe2/caffe2/contrib/nnpack:nnpack_ops")
np.random.seed(1)
def benchmark(ws, net, warmups=5, iters=100):
for _ in range(warmups):
ws.run(net)
plan = core.Plan("plan")
plan.AddStep(core.ExecutionStep("test-step", net, iters))
before = time.time()
ws.run(plan)
after = time.time()
print("Timing network, time taken per-iteration: {:.6f}ms".format((
after - before) / float(iters) * 1000.0))
return after - before
def has_avx2():
import subprocess
try:
subprocess.check_output(["grep", "avx2", "/proc/cpuinfo"])
return True
except subprocess.CalledProcessError:
# grep exits with rc 1 on no matches
return False
@unittest.skipIf(not has_avx2(), "NNPACK requires AVX2")
class NNPackOpsTest(hu.HypothesisTestCase):
@given(stride=st.integers(1, 3),
pad=st.integers(0, 2),
kernel=st.integers(3, 5),
size=st.integers(5, 10),
input_channels=st.integers(1, 8),
batch_size=st.integers(1, 5),
groups=st.integers(1, 2))
def test_convolution_correctness(self, stride, pad, kernel, size,
input_channels,
batch_size, groups):
input_channels *= groups
output_channels = int(input_channels / groups)
assume(input_channels % groups == 0)
assume(output_channels % groups == 0)
assume(output_channels == input_channels / groups)
assume(stride <= kernel)
if stride != 1:
assume(batch_size == 1)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
w = np.random.rand(
input_channels, output_channels, kernel, kernel).astype(np.float32)\
- 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
order = "NCHW"
outputs = {}
for engine in ["", "NNPACK"]:
op = core.CreateOperator(
"Conv",
["X", "w", "b"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
order=order,
kts="TUPLE",
engine=engine,
group=groups,
)
self.ws.create_blob("X").feed(X)
self.ws.create_blob("w").feed(w)
self.ws.create_blob("b").feed(b)
self.ws.run(op)
outputs[engine] = self.ws.blobs["Y"].fetch()
np.testing.assert_allclose(
outputs[""],
outputs["NNPACK"],
atol=1e-4,
rtol=1e-4)
@given(size=st.sampled_from([6, 8]),
input_channels=st.integers(1, 8),
batch_size=st.integers(1, 5))
def test_max_pool_correctness(self, size, input_channels, batch_size):
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
order = "NCHW"
outputs = {}
# only 2 * 2 stride and 2 * 2 pool is supported in NNPack now
stride = 2
kernel = 2
# The pooling strategy of NNPack is different from caffe2 pooling
pad = 0
for engine in ["", "NNPACK"]:
op = core.CreateOperator(
"MaxPool",
["X"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
order=order,
engine=engine,
)
self.ws.create_blob("X").feed(X)
self.ws.run(op)
outputs[engine] = self.ws.blobs["Y"].fetch()
np.testing.assert_allclose(
outputs[""],
outputs["NNPACK"],
atol=1e-4,
rtol=1e-4)
@given(size=st.sampled_from([6, 8]),
input_channels=st.integers(1, 8),
batch_size=st.integers(1, 5))
def test_relu_correctness(self, size, input_channels, batch_size):
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
outputs = {}
for engine in ["", "NNPACK"]:
op = core.CreateOperator(
"Relu",
["X"],
["Y"],
engine=engine,
)
self.ws.create_blob("X").feed(X)
self.ws.run(op)
outputs[engine] = self.ws.blobs["Y"].fetch()
np.testing.assert_allclose(
outputs[""],
outputs["NNPACK"],
atol=1e-4,
rtol=1e-4)
@given(size=st.sampled_from([6, 8]),
input_channels=st.integers(1, 8),
batch_size=st.integers(1, 5),
alpha=st.floats(0, 1))
def test_leaky_relu_correctness(self, size, input_channels, batch_size,
alpha):
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
outputs = {}
for engine in ["", "NNPACK"]:
op = core.CreateOperator(
"LeakyRelu",
["X"],
["Y"],
alpha=alpha,
engine=engine,
)
self.ws.create_blob("X").feed(X)
self.ws.run(op)
outputs[engine] = self.ws.blobs["Y"].fetch()
np.testing.assert_allclose(
outputs[""],
outputs["NNPACK"],
atol=1e-4,
rtol=1e-4)
@settings(deadline=3600)
@unittest.skipIf(not os.environ.get("CAFFE2_BENCHMARK"), "Benchmark")
@given(stride=st.integers(1, 1),
pad=st.integers(0, 2),
kernel=st.sampled_from([3, 5, 7]),
size=st.integers(30, 90),
input_channels=st.sampled_from([3, 64, 256]),
output_channels=st.sampled_from([32, 96, 256]),
batch_size=st.sampled_from([32, 64, 96, 128]))
def test_timings(self, stride, pad, kernel, size,
input_channels, output_channels, batch_size):
assume(stride <= kernel)
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
w = np.random.rand(output_channels, input_channels,
kernel, kernel).astype(np.float32) - 0.5
b = np.random.rand(output_channels).astype(np.float32) - 0.5
order = "NCHW"
times = {}
for engine in ["", "NNPACK"]:
net = core.Net(engine + "_test")
net.Conv(
["X", "W", "b"], "Y",
order=order,
kernel=kernel,
stride=stride,
pad=pad,
kts="TUPLE",
engine=engine,
)
self.ws.create_blob("X").feed(X)
self.ws.create_blob("W").feed(w)
self.ws.create_blob("b").feed(b)
self.ws.run(net)
times[engine] = benchmark(self.ws, net)
print("Speedup for NNPACK: {:.2f}".format(
times[""] / times["NNPACK"]))
@settings(deadline=3600)
@unittest.skipIf(not os.environ.get("CAFFE2_BENCHMARK"), "Benchmark")
@given(size=st.integers(30, 90),
input_channels=st.sampled_from([3, 64, 256]),
batch_size=st.sampled_from([32, 64, 96, 128]))
def test_relu_timings(self, size, input_channels, batch_size):
X = np.random.rand(
batch_size, input_channels, size, size).astype(np.float32) - 0.5
times = {}
for engine in ["", "NNPACK"]:
net = core.Net(engine + "_test")
net.Relu(
["X"],
["Y"],
engine=engine,
)
self.ws.create_blob("X").feed(X)
self.ws.run(net)
times[engine] = benchmark(self.ws, net)
print("Speedup for NNPACK: {:.2f}".format(
times[""] / times["NNPACK"]))
|