1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
from abc import abstractmethod
from caffe2.python import workspace
from caffe2.python import timeout_guard
from caffe2.python import data_parallel_model
from . import checkpoint as checkpoint
from . import ModuleRegister as ModuleRegister
from . import module_map as module_map
# instantiate logger outside of distributed operators may trigger error
# logger need to be created in each idividual operator instead.
import os
import inspect
import time
import logging
logging.basicConfig()
log = logging.getLogger("AnyExp")
log.setLevel(logging.DEBUG)
def initOpts(opts):
workspace.GlobalInit(
['caffe2', '--caffe2_log_level=2', '--caffe2_gpu_memory_tracking=0'])
assert (opts['distributed']['num_gpus'] > 0 or
opts['distributed']['num_cpus'] > 0),\
"Need to specify num_gpus or num_cpus to decide which device to use."
trainWithCPU = (opts['distributed']['num_gpus'] == 0)
num_xpus = opts['distributed']['num_cpus'] if \
trainWithCPU else opts['distributed']['num_gpus']
first_xpu = opts['distributed']['first_cpu_id'] if \
trainWithCPU else opts['distributed']['first_gpu_id']
opts['distributed']['device'] = 'cpu' if trainWithCPU else 'gpu'
opts['model_param']['combine_spatial_bn'] =\
trainWithCPU and opts['model_param']['combine_spatial_bn']
opts['distributed']['num_xpus'] = num_xpus
opts['distributed']['first_xpu_id'] = first_xpu
opts['temp_var'] = {}
opts['temp_var']['metrics_output'] = {}
return opts
def initDefaultModuleMap():
registerModuleMap(module_map)
def registerModuleMap(module_map):
ModuleRegister.registerModuleMap(module_map)
def aquireDatasets(opts):
myAquireDataModule = ModuleRegister.getModule(opts['input']['input_name_py'])
return myAquireDataModule.get_input_dataset(opts)
def createTrainerClass(opts):
return ModuleRegister.constructTrainerClass(AnyExpTrainer, opts)
def overrideAdditionalMethods(myTrainerClass, opts):
return ModuleRegister.overrideAdditionalMethods(myTrainerClass, opts)
def initialize_params_from_file(*args, **kwargs):
return checkpoint.initialize_params_from_file(*args, **kwargs)
class AnyExpTrainer(object):
def __init__(self, opts):
import logging
logging.basicConfig()
log = logging.getLogger("AnyExp")
log.setLevel(logging.DEBUG)
self.log = log
self.opts = opts
self.train_dataset = None
self.test_dataset = None
self.train_df = None
self.test_df = None
self.metrics = {}
self.plotsIngredients = []
self.record_epochs = []
self.samples_per_sec = []
self.secs_per_train = []
self.metrics_output = opts['temp_var']['metrics_output']
first_xpu = opts['distributed']['first_xpu_id']
num_xpus = opts['distributed']['num_xpus']
self.xpus = range(first_xpu, first_xpu + num_xpus)
self.total_batch_size = \
self.opts['epoch_iter']['batch_per_device'] * \
self.opts['distributed']['num_xpus'] * \
self.opts['distributed']['num_shards']
self.epoch_iterations = \
self.opts['epoch_iter']['num_train_sample_per_epoch'] // \
self.total_batch_size
if len(opts['input']['datasets']) > 0:
self.train_df = opts['input']['datasets'][0]
if len(opts['input']['datasets']) == 2:
self.test_df = opts['input']['datasets'][1]
# at this point, the intance of this class becomes many instances
# running on different machines. Most of their attributes are same,
# but the shard_ids are different.
self.shard_id = opts['temp_var']['shard_id']
self.start_epoch = opts['temp_var']['start_epoch']
self.epoch = opts['temp_var']['epoch']
self.epochs_to_run = opts['epoch_iter']['num_epochs_per_flow_schedule']
log.info('opts: {}'.format(str(opts)))
@abstractmethod
def get_input_dataset(self, opts):
pass
@abstractmethod
def get_model_input_fun(self):
pass
@abstractmethod
def init_model(self):
pass
def init_metrics(self):
metrics = self.opts['output']['metrics']
for metric in metrics:
meterClass = self.getMeterClass(metric['meter_py'])
# log.info('metric.meter_kargs {}'.format(metric.meter_kargs))
# log.info('type meter_kargs {}'.format(type(metric.meter_kargs)))
meterInstance = meterClass(opts=self.opts, **metric['meter_kargs'])
self.add_metric(metric['name'], meterInstance, metric['is_train'])
def getMeterClass(self, meterName):
return ModuleRegister.getClassFromModule(meterName, meterName)
def add_metric(self, name, calculator, is_train):
metrics = self.metrics
metrics[name] = {}
metrics[name]['calculator'] = calculator
metrics[name]['is_train'] = is_train
metrics[name]['output'] = []
def extendMetricsOutput(self):
metrics_output = self.metrics_output
if not metrics_output:
metrics_output['epochs'] = self.record_epochs
metrics_output['samples_per_sec'] = self.samples_per_sec
metrics_output['secs_per_train'] = self.secs_per_train
for metric, value in self.metrics.items():
metrics_output[metric] = value['output']
else:
metrics_output['epochs'].extend(self.record_epochs)
metrics_output['samples_per_sec'].extend(self.samples_per_sec)
metrics_output['secs_per_train'].extend(self.secs_per_train)
for metric, value in self.metrics.items():
metrics_output[metric].extend(value['output'])
@abstractmethod
def init_plots(self):
pass
def add_plot(self, x, x_title, ys, y_title):
plotsIngredients = self.plotsIngredients
aPlotIngredients = {}
aPlotIngredients['x'] = x
aPlotIngredients['x_title'] = x_title
aPlotIngredients['ys'] = ys
aPlotIngredients['y_title'] = y_title
plotsIngredients.append(aPlotIngredients)
@abstractmethod
def init_logs(self):
pass
def list_of_epochs(self):
iter_end_point = min(self.opts['epoch_iter']['num_epochs'],
self.epoch +
self.opts['epoch_iter']['num_epochs_per_flow_schedule'])
return range(self.epoch, iter_end_point)
def list_of_epoch_iters(self):
return range(0, self.epoch_iterations)
@abstractmethod
def fun_per_epoch_b4RunNet(self, epoch):
pass
@abstractmethod
def fun_per_epoch_aftRunNet(self, epoch):
pass
def checkpoint(self, epoch):
self.model_path = checkpoint.save_model_params(
True, self.train_model, self.gen_checkpoint_path(True, epoch + 1),
epoch + 1, self.opts, float('-inf'))
def gen_checkpoint_path(self, is_checkpoint, epoch):
if (is_checkpoint):
filename = "model_checkpoint_epoch{}.pkl".format(epoch)
else:
filename = "model_final.pkl"
return self.opts['output']['checkpoint_folder'] + filename
# @abstractmethod
# def gen_checkpoint_path(self, is_checkpoint, epoch):
# pass
@abstractmethod
def fun_per_iter_b4RunNet(self, epoch, epoch_iter):
pass
@abstractmethod
def fun_per_iter_aftRunNetB4Test(self, epoch, epoch_iter):
pass
@abstractmethod
def fun_per_iter_aftRunNetAftTest(self, epoch, epoch_iter):
pass
@abstractmethod
def fun_conclude_operator(self, opts):
pass
def createMetricsPlotsModelsOutputs(self):
self.extendMetricsOutput()
self.model_output = self.model_path
@abstractmethod
def assembleAllOutputs(self):
pass
@abstractmethod
def gen_input_builder_fun(self, model, dataset, is_train):
pass
@abstractmethod
def gen_forward_pass_builder_fun(self, model, dataset, is_train):
pass
@abstractmethod
def gen_param_update_builder_fun(self, model, dataset, is_train):
pass
@abstractmethod
def gen_optimizer_fun(self, model, dataset, is_train):
pass
@abstractmethod
def gen_rendezvous_ctx(self, model, dataset, is_train):
pass
@abstractmethod
def run_training_net(self):
pass
@abstractmethod
def run_testing_net(self):
if self.test_model is None:
return
timeout = 2000.0
with timeout_guard.CompleteInTimeOrDie(timeout):
workspace.RunNet(self.test_model.net.Proto().name)
# @abstractmethod
def planning_output(self):
self.init_metrics()
self.init_plots()
self.init_logs()
def prep_data_parallel_models(self):
self.prep_a_data_parallel_model(self.train_model,
self.train_dataset, True)
self.prep_a_data_parallel_model(self.test_model,
self.test_dataset, False)
def prep_a_data_parallel_model(self, model, dataset, is_train):
if model is None:
return
log.info('in prep_a_data_parallel_model')
param_update = \
self.gen_param_update_builder_fun(model, dataset, is_train) \
if self.gen_param_update_builder_fun is not None else None
log.info('in prep_a_data_parallel_model param_update done ')
optimizer = \
self.gen_optimizer_fun(model, dataset, is_train) \
if self.gen_optimizer_fun is not None else None
log.info('in prep_a_data_parallel_model optimizer done ')
max_ops = self.opts['model_param']['max_concurrent_distributed_ops']
data_parallel_model.Parallelize(
model,
input_builder_fun=self.gen_input_builder_fun(model, dataset, is_train),
forward_pass_builder_fun=self.gen_forward_pass_builder_fun(
model, dataset, is_train),
param_update_builder_fun=param_update,
optimizer_builder_fun=optimizer,
devices=self.xpus,
rendezvous=self.gen_rendezvous_ctx(model, dataset, is_train),
broadcast_computed_params=False,
optimize_gradient_memory=self.opts['model_param']['memonger'],
use_nccl=self.opts['model_param']['cuda_nccl'],
max_concurrent_distributed_ops=max_ops,
cpu_device=(self.opts['distributed']['device'] == 'cpu'),
# "shared model" will only keep model parameters for cpu_0 or gpu_0
# will cause issue when initialize each gpu_0, gpu_1, gpu_2 ...
# shared_model=(self.opts['distributed']['device'] == 'cpu'),
combine_spatial_bn=self.opts['model_param']['combine_spatial_bn'],
)
log.info('in prep_a_data_parallel_model Parallelize done ')
# log.info("Current blobs in workspace: {}".format(workspace.Blobs()))
workspace.RunNetOnce(model.param_init_net)
log.info('in prep_a_data_parallel_model RunNetOnce done ')
# for op in model.net.Proto().op:
# log.info('op type engine {} {}'.format(op.type, op.engine))
log.info('model.net.Proto() {}'.format(model.net.Proto()))
workspace.CreateNet(model.net)
# for op in model.net.Proto().op:
# log.info('after CreateNet op type engine {} {}'.
# format(op.type, op.engine))
log.info('in prep_a_data_parallel_model CreateNet done ')
def loadCheckpoint(self):
opts = self.opts
previous_checkpoint = opts['temp_var']['checkpoint_model']
pretrained_model = opts['temp_var']['pretrained_model']
num_xpus = opts['distributed']['num_xpus']
if (previous_checkpoint is not None):
if os.path.exists(previous_checkpoint):
log.info('Load previous checkpoint:{}'.format(
previous_checkpoint
))
start_epoch, prev_checkpointed_lr, _best_metric = \
checkpoint.initialize_params_from_file(
model=self.train_model,
weights_file=previous_checkpoint,
num_xpus=num_xpus,
opts=opts,
broadcast_computed_param=True,
reset_epoch=False,
)
elif pretrained_model is not None and os.path.exists(pretrained_model):
log.info("Load pretrained model: {}".format(pretrained_model))
start_epoch, prev_checkpointed_lr, best_metric = \
checkpoint.initialize_params_from_file(
model=self.train_model,
weights_file=pretrained_model,
num_xpus=num_xpus,
opts=opts,
broadcast_computed_param=True,
reset_epoch=opts['model_param']['reset_epoch'],
)
data_parallel_model.FinalizeAfterCheckpoint(self.train_model)
def buildModelAndTrain(self, opts):
log.info('in buildModelAndTrain, trainer_input: {}'.format(str(opts)))
log.info("check type self: {}".format(type(self)))
log.info("check self dir: {}".format(dir(self)))
log.info("check self source: {}".format(self.__dict__))
log.info("check self get_input_dataset methods: {}".
format(inspect.getsource(self.get_input_dataset)))
log.info("check self gen_input_builder_fun method: {}".
format(inspect.getsource(self.gen_input_builder_fun)))
log.info("check self gen_forward_pass_builder_fun method: {}".
format(inspect.getsource(self.gen_forward_pass_builder_fun)))
if self.gen_param_update_builder_fun is not None:
log.info("check self gen_param_update_builder_fun method: {}".
format(inspect.getsource(self.gen_param_update_builder_fun)))
else:
log.info("check self gen_optimizer_fun method: {}".
format(inspect.getsource(self.gen_optimizer_fun)))
log.info("check self assembleAllOutputs method: {}".
format(inspect.getsource(self.assembleAllOutputs)))
log.info("check self prep_data_parallel_models method: {}".
format(inspect.getsource(self.prep_data_parallel_models)))
self.get_model_input_fun()
self.init_model()
self.planning_output()
self.prep_data_parallel_models()
self.loadCheckpoint()
for epoch in self.list_of_epochs():
log.info("start training epoch {}".format(epoch))
self.fun_per_epoch_b4RunNet(epoch)
for epoch_iter in self.list_of_epoch_iters():
self.iter_start_time = time.time()
self.fun_per_iter_b4RunNet(epoch, epoch_iter)
if self.train_model is not None:
self.run_training_net()
self.fun_per_iter_aftRunNetB4Test(epoch, epoch_iter)
self.iter_end_time = time.time()
if (epoch_iter %
opts['epoch_iter']['num_train_iteration_per_test'] == 0):
secs_per_train = (self.iter_end_time - self.iter_start_time)
self.secs_per_train.append(secs_per_train)
sample_trained = self.total_batch_size
samples_per_sec = sample_trained / secs_per_train
self.samples_per_sec.append(samples_per_sec)
self.fract_epoch = (epoch +
float(epoch_iter) / self.epoch_iterations)
self.record_epochs.append(self.fract_epoch)
for key in self.metrics:
metric = self.metrics[key]
if not metric['is_train']:
continue
metric['calculator'].Add()
metric['output'].append(metric['calculator'].Compute())
self.test_loop_start_time = time.time()
for _test_iter in range(0, opts['epoch_iter']['num_test_iter']):
self.run_testing_net()
for key in self.metrics:
metric = self.metrics[key]
if metric['is_train']:
continue
metric['calculator'].Add()
self.test_loop_end_time = time.time()
self.sec_per_test_loop = \
self.test_loop_end_time - self.test_loop_start_time
for metric in self.metrics.values():
if metric['is_train']:
continue
metric['output'].append(metric['calculator'].Compute())
logStr = 'epoch:{}/{} iter:{}/{} secs_per_train:{} '.format(
self.fract_epoch, self.opts['epoch_iter']['num_epochs'],
epoch_iter, self.epoch_iterations, secs_per_train)
logStr += 'samples_per_sec:{} loop {} tests takes {} sec'.format(
samples_per_sec, opts['epoch_iter']['num_test_iter'],
self.sec_per_test_loop)
for metric, value in self.metrics.items():
logStr += ' {}:{} '.format(metric, value['output'][-1])
log.info('Iter Stats: {}'.format(logStr))
self.fun_per_iter_aftRunNetAftTest(epoch, epoch_iter)
self.checkpoint(epoch)
self.fun_per_epoch_aftRunNet(epoch)
self.fun_conclude_operator()
self.createMetricsPlotsModelsOutputs()
return self.assembleAllOutputs()
|