1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
import logging
logging.basicConfig()
log = logging.getLogger("AnyExp")
log.setLevel(logging.DEBUG)
# For more depths, add the block config here
BLOCK_CONFIG = {
18: (2, 2, 2, 2),
34: (3, 4, 6, 3),
50: (3, 4, 6, 3),
101: (3, 4, 23, 3),
152: (3, 8, 36, 3),
200: (3, 32, 36, 3),
264: (3, 64, 36, 3),
284: (3, 32, 64, 3),
}
def gen_forward_pass_builder_fun(self, model, dataset, is_train):
split = 'train' if is_train else 'test'
opts = self.opts
def model_creator(model, loss_scale):
model, softmax, loss = resnet_imagenet_create_model(
model=model,
data='data',
labels='label',
split=split,
opts=opts,
dataset=dataset,
)
return [loss]
return model_creator
def resnet_imagenet_create_model(model, data, labels, split, opts, dataset):
model_helper = ResNetModelHelper(model, split, opts)
opts_depth = opts['model_param']['num_layer']
engine = opts['model_param']['engine']
log.info(' | ResNet-{} Imagenet'.format(opts_depth))
assert opts_depth in BLOCK_CONFIG.keys(), \
'Block config is not defined for specified model depth. Please check.'
(n1, n2, n3, n4) = BLOCK_CONFIG[opts_depth]
num_features = 2048
residual_block = model_helper.bottleneck_block
if opts_depth in [18, 34]:
num_features = 512
residual_block = model_helper.basic_block
num_classes = 1000
conv_blob = model.Conv(
data, 'conv1', 3, 64, 7, stride=2, pad=3, weight_init=('MSRAFill', {}),
bias_init=('ConstantFill', {'value': 0.}), no_bias=0, engine=engine
)
test_mode = False
if split in ['test', 'val']:
test_mode = True
bn_blob = model.SpatialBN(
conv_blob, 'res_conv1_bn', 64,
# does not appear to affect test_loss performance
# epsilon=1e-3,
epsilon=opts['model_param']['bn_epsilon'],
# momentum=0.1,
momentum=opts['model_param']['bn_momentum'],
is_test=test_mode,
)
relu_blob = model.Relu(bn_blob, bn_blob)
max_pool = model.MaxPool(relu_blob, 'pool1', kernel=3, stride=2, pad=1)
# TODO: This can be further optimized by passing dim_in, dim_out = features,
# dim_out = features * 4
if opts_depth in [50, 101, 152, 200, 264, 284]:
blob_in, dim_in = model_helper.residual_layer(
residual_block, max_pool, 64, 256, stride=1, num_blocks=n1,
prefix='res2', dim_inner=64
)
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 512, stride=2, num_blocks=n2,
prefix='res3', dim_inner=128
)
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 1024, stride=2, num_blocks=n3,
prefix='res4', dim_inner=256
)
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 2048, stride=2, num_blocks=n4,
prefix='res5', dim_inner=512
)
elif opts_depth in [18, 34]:
blob_in, dim_in = model_helper.residual_layer(
residual_block, max_pool, 64, 64, stride=1, num_blocks=n1,
prefix='res2',
)
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 128, stride=2, num_blocks=n2,
prefix='res3',
)
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 256, stride=2, num_blocks=n3,
prefix='res4',
)
blob_in, dim_in = model_helper.residual_layer(
residual_block, blob_in, dim_in, 512, stride=2, num_blocks=n4,
prefix='res5',
)
pool_blob = model.AveragePool(blob_in, 'pool5', kernel=7, stride=1)
loss_scale = 1. / opts['distributed']['num_xpus'] / \
opts['distributed']['num_shards']
loss = None
fc_blob = model.FC(
pool_blob, 'pred', num_features, num_classes,
# does not appear to affect test_loss performance
# weight_init=('GaussianFill', {'std': opts.fc_init_std}),
# bias_init=('ConstantFill', {'value': 0.})
weight_init=None,
bias_init=None)
softmax, loss = model.SoftmaxWithLoss(
[fc_blob, labels],
['softmax', 'loss'],
scale=loss_scale)
model.Accuracy(['softmax', labels], 'accuracy')
return model, softmax, loss
class ResNetModelHelper():
def __init__(self, model, split, opts):
self.model = model
self.split = split
self.opts = opts
self.engine = opts['model_param']['engine']
# shortcut type B
def add_shortcut(self, blob_in, dim_in, dim_out, stride, prefix):
if dim_in == dim_out:
return blob_in
conv_blob = self.model.Conv(
blob_in, prefix, dim_in, dim_out, kernel=1,
stride=stride,
weight_init=("MSRAFill", {}),
bias_init=('ConstantFill', {'value': 0.}), no_bias=1, engine=self.engine
)
test_mode = False
if self.split in ['test', 'val']:
test_mode = True
bn_blob = self.model.SpatialBN(
conv_blob, prefix + "_bn", dim_out,
# epsilon=1e-3,
# momentum=0.1,
epsilon=self.opts['model_param']['bn_epsilon'],
momentum=self.opts['model_param']['bn_momentum'],
is_test=test_mode,
)
return bn_blob
def conv_bn(
self, blob_in, dim_in, dim_out, kernel, stride, prefix, group=1, pad=1,
):
conv_blob = self.model.Conv(
blob_in, prefix, dim_in, dim_out, kernel, stride=stride,
pad=pad, group=group,
weight_init=("MSRAFill", {}),
bias_init=('ConstantFill', {'value': 0.}), no_bias=1, engine=self.engine
)
test_mode = False
if self.split in ['test', 'val']:
test_mode = True
bn_blob = self.model.SpatialBN(
conv_blob, prefix + "_bn", dim_out,
epsilon=self.opts['model_param']['bn_epsilon'],
momentum=self.opts['model_param']['bn_momentum'],
is_test=test_mode,
)
return bn_blob
def conv_bn_relu(
self, blob_in, dim_in, dim_out, kernel, stride, prefix, pad=1, group=1,
):
bn_blob = self.conv_bn(
blob_in, dim_in, dim_out, kernel, stride, prefix, group=group,
pad=pad
)
return self.model.Relu(bn_blob, bn_blob)
# 3(a)this block uses multi-way group conv implementation that splits blobs
def multiway_bottleneck_block(
self, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group
):
blob_out = self.conv_bn_relu(
blob_in, dim_in, dim_inner, 1, 1, prefix + "_branch2a", pad=0,
)
conv_blob = self.model.GroupConv_Deprecated(
blob_out, prefix + "_branch2b", dim_inner, dim_inner, kernel=3,
stride=stride, pad=1, group=group, weight_init=("MSRAFill", {}),
bias_init=('ConstantFill', {'value': 0.}), no_bias=1, engine=self.engine
)
test_mode = False
if self.split in ['test', 'val']:
test_mode = True
bn_blob = self.model.SpatialBN(
conv_blob, prefix + "_branch2b_bn", dim_out,
epsilon=self.opts['model_param']['bn_epsilon'],
momentum=self.opts['model_param']['bn_momentum'], is_test=test_mode,
)
relu_blob = self.model.Relu(bn_blob, bn_blob)
bn_blob = self.conv_bn(
relu_blob, dim_inner, dim_out, 1, 1, prefix + "_branch2c", pad=0
)
if self.opts['model_param']['custom_bn_init']:
self.model.param_init_net.ConstantFill(
[bn_blob + '_s'], bn_blob + '_s',
value=self.opts['model_param']['bn_init_gamma'])
sc_blob = self.add_shortcut(
blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1"
)
sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum")
return self.model.Relu(sum_blob, sum_blob)
# 3(c) this block uses cudnn group conv op
def group_bottleneck_block(
self, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group
):
blob_out = self.conv_bn_relu(
blob_in, dim_in, dim_inner, 1, 1, prefix + "_branch2a", pad=0,
)
blob_out = self.conv_bn_relu(
blob_out, dim_inner, dim_inner, 3, stride, prefix + "_branch2b",
group=group
)
bn_blob = self.conv_bn(
blob_out, dim_inner, dim_out, 1, 1, prefix + "_branch2c", pad=0
)
if self.opts['model_param']['custom_bn_init']:
self.model.param_init_net.ConstantFill(
[bn_blob + '_s'], bn_blob + '_s',
value=self.opts['model_param']['bn_init_gamma'])
sc_blob = self.add_shortcut(
blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1"
)
sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum")
return self.model.Relu(sum_blob, sum_blob)
# bottleneck residual layer for 50, 101, 152 layer networks
def bottleneck_block(
self, blob_in, dim_in, dim_out, stride, prefix, dim_inner, group=None
):
blob_out = self.conv_bn_relu(
blob_in, dim_in, dim_inner, 1, 1, prefix + "_branch2a", pad=0,
)
blob_out = self.conv_bn_relu(
blob_out, dim_inner, dim_inner, 3, stride, prefix + "_branch2b",
)
bn_blob = self.conv_bn(
blob_out, dim_inner, dim_out, 1, 1, prefix + "_branch2c", pad=0
)
if self.opts['model_param']['custom_bn_init']:
self.model.param_init_net.ConstantFill(
[bn_blob + '_s'], bn_blob + '_s',
value=self.opts['model_param']['bn_init_gamma'])
sc_blob = self.add_shortcut(
blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1"
)
sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum")
return self.model.Relu(sum_blob, sum_blob)
# basic layer for the 18 and 34 layer networks and the CIFAR data netwrorks
def basic_block(
self, blob_in, dim_in, dim_out, stride, prefix, dim_inner=None,
group=None,
):
blob_out = self.conv_bn_relu(
blob_in, dim_in, dim_out, 3, stride, prefix + "_branch2a"
)
bn_blob = self.conv_bn(
blob_out, dim_out, dim_out, 3, 1, prefix + "_branch2b", pad=1
)
sc_blob = self.add_shortcut(
blob_in, dim_in, dim_out, stride, prefix=prefix + "_branch1"
)
sum_blob = self.model.net.Sum([bn_blob, sc_blob], prefix + "_sum")
return self.model.Relu(sum_blob, sum_blob)
def residual_layer(
self, block_fn, blob_in, dim_in, dim_out, stride, num_blocks, prefix,
dim_inner=None, group=None
):
# prefix is something like: res2, res3, etc.
# each res layer has num_blocks stacked
for idx in range(num_blocks):
block_prefix = "{}_{}".format(prefix, idx)
block_stride = 2 if (idx == 0 and stride == 2) else 1
blob_in = block_fn(
blob_in, dim_in, dim_out, block_stride, block_prefix, dim_inner,
group
)
dim_in = dim_out
return blob_in, dim_in
|