File: tensorboard_exporter.py

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (344 lines) | stat: -rw-r--r-- 9,813 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344





from builtins import bytes
import copy
import logging
import os

from caffe2.proto import caffe2_pb2
from caffe2.python import core, workspace

try:
    # tensorboard>=1.14.0
    from tensorboard.compat.proto import tensor_shape_pb2
    from tensorboard.compat.proto.node_def_pb2 import NodeDef
    from tensorboard.compat.proto.graph_pb2 import GraphDef
except ImportError:
    from tensorflow.core.framework import tensor_shape_pb2
    try:
        # tensorflow>=1.0.0
        from tensorflow import NodeDef, GraphDef
    except ImportError:
        # tensorflow<=0.12.1
        from tensorflow.core.framework.graph_pb2 import NodeDef, GraphDef


def _make_unique_name(seen, name, min_version=0):
    assert name is not None
    i = min_version
    x = '%s_%d' % (name, i) if i else name
    while x in seen:
        i += 1
        x = '%s_%d' % (name, i)
    seen.add(x)
    return x


def _convert_to_ssa(shapes, track_blob_names, ops):
    """
    Convert an operator graph to SSA (i.e. out-of-place).

    I.e. blobs will be renamed so that each blob is produced only once.
    """
    ir = core.IR(ops)
    seen = set()
    versioned = {}
    shapes2 = {}
    track_blob_names2 = {}

    def ssa_name(name, versions):
        assert name in versions
        version = versions[name]
        if (name, version) in versioned:
            return versioned[(name, version)]
        # Always setting name2 = `{name}_{version}` would work, but we also try
        # to avoid a trailing `_0`, so we have to be careful not to introduce
        # name collisions, such as (foo_1, 0) = foo_1 = (foo, 1).
        # Note: operator names (if any) will be handled later.
        name2 = _make_unique_name(seen, name, min_version=version)
        versioned[(name, version)] = name2
        # Transfer shape.
        if name in shapes:
            shapes2[name2] = shapes[name]
        if track_blob_names and name in track_blob_names:
            track_blob_names2[name2] = track_blob_names[name]
        return name2

    for (op, ssa) in zip(ops, ir.ssa):
        assert op is ssa.op
        inputs = list(op.input)
        outputs = list(op.output)
        del op.input[:]
        del op.output[:]
        op.input.extend(ssa_name(name, ssa.in_versions) for name in inputs)
        op.output.extend(ssa_name(name, ssa.out_versions) for name in outputs)

    shapes.clear()
    shapes.update(shapes2)
    if track_blob_names:
        track_blob_names.clear()
        track_blob_names.update(track_blob_names2)


def _get_blob_names(ops):
    names = set()
    for op in ops:
        names.update(op.input)
        names.update(op.output)
    return {name: name for name in names}


def _remap_keys(m, f):
    m2 = {f(key): value for key, value in m.items()}
    m.clear()
    m.update(m2)


def _rename_all(shapes, track_blob_names, ops, f):
    seen = set()
    renamed = {}

    def g(name):
        """ Collision-free version of f.
        """
        if name is None:
            return None
        if name in renamed:
            return renamed[name]
        name2 = _make_unique_name(seen, f(name))
        renamed[name] = name2
        return name2

    for op in ops:
        inputs = list(op.input)
        outputs = list(op.output)
        del op.input[:]
        del op.output[:]
        op.input.extend(g(name) for name in inputs)
        op.output.extend(g(name) for name in outputs)

    _remap_keys(shapes, g)
    if track_blob_names:
        _remap_keys(track_blob_names, g)
    # Rename all operator names (if any) independently so that the
    # unique-fication happens only once in _fill_missing_operator_names().
    seen.clear()
    renamed.clear()
    for op in ops:
        op.name = g(op.name)


def _add_gradient_scope(shapes, track_blob_names, ops):
    """
    For all operators or blobs with name containing "_grad", add a
    "GRADIENTS/" scope.

    Note: breaks graph execution since the blob -> gradient mapping is
    hardcoded.
    """
    def f(name):
        if '_grad' in name:
            return 'GRADIENTS/{}'.format(name)
        else:
            return name
    _rename_all(shapes, track_blob_names, ops, f)


def _replace_colons(shapes, track_blob_names, ops, repl):
    """
    `:i` has a special meaning in Tensorflow.
    """
    def f(name):
        return name.replace(':', repl)
    _rename_all(shapes, track_blob_names, ops, f)


def _fill_missing_operator_names(ops):
    ''' Give missing operators a name.

    We expect C2 operators to be generally unnamed. This gives them a scope
    (inferred from their outputs) and a name after their type. Duplicates will
    be postfixed by an index.
    '''
    seen = set()
    for op in ops:
        # Make sure operator names don't collide with blobs.
        seen.update(op.input)
        seen.update(op.output)
    for op in ops:
        if op.name:
            name = op.name
        elif op.output or op.input:
            l = [os.path.dirname(name) for name in op.output or op.input]
            scope = os.path.commonprefix(l)
            name = os.path.join(scope, op.type)
        else:
            name = op.type
        assert(name)
        op.name = _make_unique_name(seen, name)


def _tf_device(device_option):
    if not device_option.HasField("device_type"):
        return ""
    if device_option.device_type == caffe2_pb2.CPU:
        return "/cpu:*"
    if device_option.device_type == caffe2_pb2.CUDA:
        return "/gpu:{}".format(device_option.device_id)
    raise Exception("Unhandled device", device_option)


def _add_tf_shape(m, ints):
    sh = tensor_shape_pb2.TensorShapeProto()
    for i in ints:
        dim = tensor_shape_pb2.TensorShapeProto.Dim()
        dim.size = i
        sh.dim.extend([dim])
    m['_output_shapes'].list.shape.extend([sh])


def _set_tf_attr(m, arg):
    k = arg.name
    if k == 'shape' and arg.ints:
        _add_tf_shape(m, arg.ints)
        return
    if arg.HasField("f"):
        m[k].f = arg.f
        return
    if arg.HasField("i"):
        m[k].i = arg.i
        return
    if arg.HasField("s"):
        m[k].s = (
            arg.s if isinstance(arg.s, bytes) else str(arg.s).encode('utf-8')
        )
        return
    if arg.floats:
        m[k].list.f.extend(arg.floats)
        return
    if arg.ints:
        m[k].list.i.extend(arg.ints)
        return
    if arg.strings:
        m[k].list.s.extend(
            s if isinstance(s, bytes) else str(s).encode('utf-8')
            for s in arg.strings
        )
        return
    # The value is an empty list.
    m[k].list.s.extend([])


def _operator_to_node(shapes, op):
    assert op.name, op
    n = NodeDef()
    n.name = op.name
    n.input.extend(op.input)
    n.op = op.type
    n.device = _tf_device(op.device_option)
    if shapes:
        # Add shapes in order.
        for output in op.output:
            if output not in shapes:
                break
            _add_tf_shape(n.attr, shapes[output])
    for arg in op.arg:
        _set_tf_attr(n.attr, arg)
    return n


def _blob_to_node(producing_ops, shapes, name):
    assert name
    n = NodeDef()
    n.name = name
    inputs = producing_ops.get(name, [])
    if inputs:
        n.op = 'Blob'
    else:
        n.op = 'Placeholder'
    n.input.extend('%s:%d' % (op.name, i) for op, i in inputs)
    if inputs:
        device = inputs[0][0].device_option
        if (all(input[0].device_option == device for input in inputs)):
            n.device = _tf_device(device)
    if shapes and name in shapes:
        _add_tf_shape(n.attr, shapes[name])
    return n


def _operators_to_graph_def(
    shapes,
    ops,
    replace_colons='$',
    with_ssa=True,
    with_gradient_scope=True,
    track_blob_names=None,  # pass an empty array to track blob names
):
    if track_blob_names is not None:
        track_blob_names.clear()
        track_blob_names.update(_get_blob_names(ops))
    if replace_colons:
        _replace_colons(shapes, track_blob_names, ops, replace_colons)
    if with_ssa:
        _convert_to_ssa(shapes, track_blob_names, ops)
    if with_gradient_scope:
        _add_gradient_scope(shapes, track_blob_names, ops)
    _fill_missing_operator_names(ops)
    g = GraphDef()
    producing_ops = {}
    blobs = set()
    for op in ops:
        g.node.extend([_operator_to_node(shapes, op)])
        for input_blob in op.input:
            blobs.add(input_blob)
        for i, output_blob in enumerate(op.output):
            blobs.add(output_blob)
            producing_ops.setdefault(output_blob, []).append((op, i))
    for blob in blobs:
        g.node.extend([_blob_to_node(producing_ops, shapes, blob)])
    return g


def _propagate_device_option(net):
    if not net.HasField("device_option"):
        return
    for op in net.op:
        if not op.HasField("device_option"):
            op.device_option.CopyFrom(net.device_option)


def _try_get_shapes(nets):
    try:
        # Note: this will inspect the workspace for better or worse.
        shapes, _ = workspace.InferShapesAndTypes(nets)
        return shapes
    except Exception as e:
        logging.warning('Failed to compute shapes: %s', e)
        return {}


def nets_to_graph_def(nets, shapes=None, **kwargs):
    if shapes is None:
        shapes = _try_get_shapes(nets)
    nets = [copy.deepcopy(net.Proto()) for net in nets]
    shapes = copy.deepcopy(shapes)
    for net in nets:
        _propagate_device_option(net)
    return _operators_to_graph_def(
        shapes,
        [op for net in nets for op in net.op],
        **kwargs
    )


def cnn_to_graph_def(cnn, **kwargs):
    return nets_to_graph_def([cnn.param_init_net, cnn.net], **kwargs)


def ops_to_graph_def(ops, shapes=None, **kwargs):
    ops = copy.deepcopy(ops)
    shapes = copy.deepcopy(shapes or {})
    return _operators_to_graph_def(shapes, ops, **kwargs)