1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
|
#include "caffe2/contrib/tensorrt/tensorrt_tranformer.h"
#include <iostream>
#include <unordered_set>
#include <NvInfer.h>
#include <onnx2trt.hpp>
#include "onnx/proto_utils.h"
#include "caffe2/contrib/tensorrt/trt_utils.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/onnx/onnx_exporter.h"
#include "caffe2/opt/backend_cutting.h"
namespace caffe2 {
namespace {
// TODO(yinghai): Remove the awkward conversion between unordered_map and map
std::unordered_map<std::string, TensorShape> InferShapes(
Workspace* ws,
NetDef* pred_net,
CaffeMap<std::string, TensorShape>* shape_hints_ordered) {
// Populate shapes from workplace
const std::vector<string>& ws_blobs = ws->Blobs();
for (const auto& s : ws_blobs) {
shape_hints_ordered->emplace(s, GetTensorShapeOfBlob(ws->GetBlob(s)));
}
std::vector<NetDef*> nets;
nets.emplace_back(pred_net);
InferBlobShapesAndTypes(*shape_hints_ordered, nets);
std::unordered_map<std::string, TensorShape> shape_hints;
for (const auto& kv : *shape_hints_ordered) {
shape_hints.emplace(kv.first, kv.second);
}
return shape_hints;
}
void DumpModel(const ::ONNX_NAMESPACE::ModelProto& model, const std::string& fname) {
std::ofstream ff(fname);
ff << ::ONNX_NAMESPACE::ProtoDebugString(model) << std::endl;
ff.close();
}
void CPUTensorToTensorProto(
const TensorCPU& cpu_tensor,
::ONNX_NAMESPACE::TensorProto* t) {
const auto len = cpu_tensor.size();
if (cpu_tensor.template IsType<float>()) {
t->set_data_type(::ONNX_NAMESPACE::TensorProto::FLOAT);
const float* data = cpu_tensor.template data<float>();
for (auto i = 0; i < len; ++i) {
t->add_float_data(*data++);
}
} else if (cpu_tensor.template IsType<int64_t>()) {
t->set_data_type(::ONNX_NAMESPACE::TensorProto::INT64);
const int64_t* data = cpu_tensor.template data<int64_t>();
for (auto i = 0; i < len; ++i) {
t->add_int64_data(*data++);
}
} else if (cpu_tensor.template IsType<int32_t>()) {
t->set_data_type(::ONNX_NAMESPACE::TensorProto::INT32);
const int32_t* data = cpu_tensor.template data<int32_t>();
for (auto i = 0; i < len; ++i) {
t->add_int32_data(*data++);
}
} else {
CAFFE_THROW(
"Don't know how to convert workspace tensor type ",
cpu_tensor.meta().name(),
" to ONNX TensorProto");
}
}
void BlobToTensorProto(
const std::string& name,
Workspace* ws,
CUDAContext* context,
::ONNX_NAMESPACE::TensorProto* t) {
// Set name
t->set_name(name);
const Blob* blob = ws->GetBlob(name);
CAFFE_ENFORCE(blob, "Blob ", name, " doesn't exist");
// Set dims
const auto shape = GetTensorShapeOfBlob(blob);
for (const auto i : shape.dims()) {
t->add_dims(i);
}
// Set values
if (BlobIsTensorType(*blob, CPU)) {
const auto& cpu_tensor = blob->template Get<TensorCPU>();
CPUTensorToTensorProto(cpu_tensor, t);
} else if (BlobIsTensorType(*blob, CUDA)) {
const auto& cuda_tensor = blob->template Get<TensorCUDA>();
const auto cpu_tensor = TensorCPU(cuda_tensor, CPU);
context->FinishDeviceComputation();
CPUTensorToTensorProto(cpu_tensor, t);
} else {
CAFFE_THROW(
"Initialization blob ",
name,
" needs to be either TensorCPU or TensorCUDA");
}
}
std::vector<::ONNX_NAMESPACE::ValueInfoProto> ConvertToValueInfo(
const std::vector<std::string>& names,
const std::unordered_map<std::string, TensorShape>& shape_hints) {
std::vector<::ONNX_NAMESPACE::ValueInfoProto> r;
for (const auto& s : names) {
r.emplace_back();
auto& value_info = r.back();
value_info.set_name(s);
const auto it = shape_hints.find(s);
if (it == shape_hints.end()) {
LOG(WARNING) << "Cannot get shape of " << s;
} else {
auto* tensor_type = value_info.mutable_type()->mutable_tensor_type();
tensor_type->set_elem_type(
::ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_FLOAT);
auto* shape = tensor_type->mutable_shape();
for (int i = 0; i < it->second.dims().size(); ++i) {
auto* dim = shape->add_dim();
dim->set_dim_value(it->second.dims(i));
}
}
}
return r;
}
void FillModelInfo(::ONNX_NAMESPACE::ModelProto* model) {
model->set_ir_version(::ONNX_NAMESPACE::Version::IR_VERSION);
model->set_producer_name("caffe2");
auto* opset_id = model->add_opset_import();
opset_id->set_domain("");
opset_id->set_version(7);
}
} // namespace
void BuildInitializationList(
Workspace* ws,
::ONNX_NAMESPACE::GraphProto* g,
std::unordered_set<std::string>* initialization_list) {
const std::vector<string>& ws_blobs = ws->Blobs();
// Create a CUDA context and reuse it for potential tensor copies across
// devices
CUDAContext context;
for (const auto& s : ws_blobs) {
auto it = initialization_list->find(s);
if (it != initialization_list->end()) {
auto* init_tensor = g->add_initializer();
BlobToTensorProto(s, ws, &context, init_tensor);
initialization_list->erase(it);
}
}
CAFFE_ENFORCE(
initialization_list->empty(), "Unfulfilled initialization list");
for (const auto& t : g->initializer()) {
VLOG(2) << "Initializer: " << t.name();
}
}
void TensorRTTransformer::AddTrtOptions(
OperatorDef* op,
const std::unordered_map<std::string, std::vector<int>>&
output_size_hints) {
auto* max_batch_size_arg = op->add_arg();
max_batch_size_arg->set_name("max_batch_size");
max_batch_size_arg->set_i(max_batch_size_);
auto* verbosity_arg = op->add_arg();
verbosity_arg->set_name("log_verbosity");
verbosity_arg->set_i(verbosity_);
for (int i = 0; i < op->output_size(); ++i) {
const auto& o = op->output(i);
const auto it = output_size_hints.find(o);
if (it != output_size_hints.end()) {
const auto& dims = it->second;
auto* output_size_hint_arg = op->add_arg();
output_size_hint_arg->set_name(c10::str("output_size_hint_", i));
for (const auto& d : dims) {
output_size_hint_arg->add_ints(d);
}
LOG(INFO) << "Adding output hint: " << o;
}
}
}
OperatorDef TensorRTTransformer::BuildTrtOpLazy(
const std::string& onnx_model_str,
const std::unordered_map<std::string, std::vector<int>>& output_size_hints,
const std::unordered_set<std::string>& initialization_list,
const caffe2::NetDef& net) {
OperatorDef op;
op.set_type("TensorRT");
auto* onnx_model_arg = op.add_arg();
onnx_model_arg->set_name("onnx_model");
onnx_model_arg->set_s(onnx_model_str);
// Add the names of the initializer blobs that we want to fetch from the
// workspace later
auto* initializers_arg = op.add_arg();
initializers_arg->set_name("initializers");
for (const auto& s : initialization_list) {
initializers_arg->add_strings(s);
initializers_arg->add_strings(input_mapping_.at(s));
}
// Add the input/output
for (const auto& input : net.external_input()) {
if (!initialization_list.count(input)) {
op.add_input(input);
}
}
for (const auto& output : net.external_output()) {
op.add_output(output);
}
// Additional arguments for TRT builder
auto* debug_builder_arg = op.add_arg();
debug_builder_arg->set_name("debug_builder");
debug_builder_arg->set_i(debug_builder_);
auto* max_workspace_size_arg = op.add_arg();
max_workspace_size_arg->set_name("max_workspace_size");
max_workspace_size_arg->set_i(max_workspace_size_);
AddTrtOptions(&op, output_size_hints);
return op;
}
OperatorDef TensorRTTransformer::BuildTrtOp(
const std::string& onnx_model_str,
const std::unordered_map<std::string, std::vector<int>>& output_size_hints) {
OperatorDef op;
op.set_type("TensorRT");
tensorrt::TrtLogger logger;
auto trt_engine = tensorrt::BuildTrtEngine(
onnx_model_str,
&logger,
max_batch_size_,
max_workspace_size_,
debug_builder_);
// Set up inputs/outputs in the order of they appearnce in getNbBindings
int num_bindings = trt_engine->getNbBindings();
for (int b = 0; b < num_bindings; ++b) {
const auto& name = trt_engine->getBindingName(b);
if (trt_engine->bindingIsInput(b)) {
op.add_input(name);
} else {
op.add_output(name);
}
}
auto engine_plan = tensorrt::TrtObject(trt_engine->serialize());
auto* serialized_engine_arg = op.add_arg();
serialized_engine_arg->set_s("");
serialized_engine_arg->set_name("backend_buffer");
auto* s = serialized_engine_arg->mutable_s();
s->assign((char*)engine_plan->data(), engine_plan->size());
AddTrtOptions(&op, output_size_hints);
return op;
}
NetDef TensorRTTransformer::SubnetToTrtOp(
const caffe2::NetDef& net,
Workspace* ws,
onnx::OnnxExporter* exporter,
std::unordered_map<std::string, TensorShape>* shape_hints) {
::ONNX_NAMESPACE::ModelProto onnx_model;
FillModelInfo(&onnx_model);
// Convert c2 ops to onnx ops, add const weights if there are any
for (const auto& op : net.op()) {
const auto results = exporter->Caffe2OpToOnnxNodes(op, *shape_hints);
const auto& node_protos = results.first;
for (const auto& n : node_protos) {
onnx_model.mutable_graph()->add_node()->CopyFrom(n);
}
for (const auto& t : results.second) {
VLOG(2) << "Adding extra init tensor: " << t.name();
TensorShape shape;
shape.mutable_dims()->CopyFrom(t.dims());
shape_hints->emplace(t.name(), std::move(shape));
::ONNX_NAMESPACE::TensorProto tf;
tf.set_name(t.name());
tf.mutable_dims()->CopyFrom(t.dims());
if (t.data_type() == ::ONNX_NAMESPACE::TensorProto::FLOAT) {
tf.set_data_type(::ONNX_NAMESPACE::TensorProto::FLOAT);
std::vector<int64_t> v;
v.resize(t.raw_data().size() / sizeof(int64_t));
memcpy(v.data(), t.raw_data().data(), t.raw_data().size());
std::vector<float> vf;
for (auto i : v) {
vf.push_back(static_cast<float>(i));
}
tf.mutable_raw_data()->assign(
reinterpret_cast<const char *>(vf.data()), sizeof(float) * vf.size());
} else if (t.data_type() == ::ONNX_NAMESPACE::TensorProto::INT64) {
tf.set_data_type(::ONNX_NAMESPACE::TensorProto::INT64);
tf.mutable_raw_data()->assign(t.raw_data().data(), t.raw_data().size());
} else {
CAFFE_THROW("Unsupported tensor data type for conversion: ",
t.data_type());
}
onnx_model.mutable_graph()->add_initializer()->CopyFrom(tf);
}
}
// Convert outputs and compute output shape hints
std::vector<std::string> io_names;
for (const auto& output : net.external_output()) {
io_names.emplace_back(output);
}
auto io_vec = ConvertToValueInfo(io_names, *shape_hints);
std::unordered_map<std::string, std::vector<int>> output_shape_hints;
for (const auto& i : io_vec) {
onnx_model.mutable_graph()->add_output()->CopyFrom(i);
auto ret = output_shape_hints.emplace(i.name(), std::vector<int>());
auto& vec = ret.first->second;
const auto it = shape_hints->find(i.name());
CAFFE_ENFORCE(
it != shape_hints->end(),
"Cannot find shape info for output ",
i.name());
const auto& shape = it->second;
for (int k = 0; k < shape.dims().size(); ++k) {
vec.push_back(shape.dims(k));
}
}
// Convert inputs and figure out weights
std::unordered_set<std::string> weights;
const std::vector<string>& ws_blobs = ws->Blobs();
for (const auto& s : ws_blobs) {
VLOG(2) << "Add weights: " << s;
weights.emplace(s);
}
std::unordered_set<std::string> total_inputs;
std::unordered_set<std::string> initialization_list;
std::vector<std::string> total_inputs_vec;
// Extra intermediate weights created during conversion
for (const auto& extra_weight : onnx_model.graph().initializer()) {
if (total_inputs.emplace(extra_weight.name()).second) {
total_inputs_vec.emplace_back(extra_weight.name());
}
}
// Boundary inputs, should not be weights
std::unordered_set<std::string> boundary_inputs;
for (const auto& i : net.external_input()) {
boundary_inputs.emplace(i);
}
for (const auto& op : net.op()) {
for (const auto& input : op.input()) {
if (total_inputs.emplace(input).second && weights.count(input)) {
// We add weights as inputs too
total_inputs_vec.emplace_back(input);
initialization_list.emplace(input);
VLOG(2) << "Add input weights: " << input;
} else if (boundary_inputs.count(input)) {
VLOG(2) << "Adding boundary input: " << input;
total_inputs_vec.emplace_back(input);
}
}
}
io_vec = ConvertToValueInfo(total_inputs_vec, *shape_hints);
for (const auto& i : io_vec) {
onnx_model.mutable_graph()->add_input()->CopyFrom(i);
}
// Debug stuff
if (debug_builder_) {
DumpModel(onnx_model, "debug.onnxtxt");
}
// Convert weights to initializing tensors if we are building serializable trt
// op or defer it to construction time of trt op
if (build_serializable_op_) {
BuildInitializationList(
ws, onnx_model.mutable_graph(), &initialization_list);
}
// Onnx model is ready. Call onnx-trt to convert to one trt c2 op
std::string model_str;
onnx_model.SerializeToString(&model_str);
NetDef net_opt;
auto* op = net_opt.add_op();
if (build_serializable_op_) {
*op = BuildTrtOp(model_str, output_shape_hints);
} else {
*op =
BuildTrtOpLazy(model_str, output_shape_hints, initialization_list, net);
}
for (const auto& i : op->input()) {
net_opt.add_external_input(i);
}
for (const auto& i : op->output()) {
net_opt.add_external_output(i);
}
return net_opt;
}
CaffeMap<std::string, TensorShape> TensorRTTransformer::SsaRewriteAndMapNames(
Workspace* ws,
NetDef* pred_net,
const std::unordered_map<std::string, TensorShape>& input_shape_hints) {
input_mapping_ = onnx::SsaRewrite(nullptr, pred_net);
std::unordered_map<std::string, std::string> input_reverse_mapping;
std::vector<std::string> external_inputs;
for (const auto kv : input_mapping_) {
input_reverse_mapping.emplace(kv.second, kv.first);
if (!ws->HasBlob(kv.second)) {
external_inputs.emplace_back(kv.first);
}
}
for (const auto& i : external_inputs) {
input_mapping_.erase(i);
}
CaffeMap<std::string, TensorShape> shape_hints_ordered;
for (const auto& kv : input_shape_hints) {
const auto it = input_reverse_mapping.find(kv.first);
if (it != input_reverse_mapping.end()) {
LOG(INFO) << "Adding input hint: " << it->second;
shape_hints_ordered.emplace(it->second, kv.second);
} else {
shape_hints_ordered.emplace(kv.first, kv.second);
}
}
return shape_hints_ordered;
}
void TensorRTTransformer::PruneUnusedWeights(
Workspace* ws,
const NetDef& pred_net) {
std::unordered_set<std::string> used_weights;
for (const auto& op : pred_net.op()) {
for (const auto& i : op.input()) {
used_weights.emplace(i);
}
}
for (const auto kv : input_mapping_) {
// for weights that are not referenced anywhere, we remove it from the
// original workspace
if (!used_weights.count(kv.first)) {
VLOG(2) << "Removing unused weight blob: " << kv.second << " ("
<< kv.first << ")";
ws->RemoveBlob(kv.second);
}
}
}
// Cutting off the runnable part and replace with tensor ops. Asssume the nets
// were topologically sorted
void TensorRTTransformer::Transform(
Workspace* ws,
NetDef* pred_net,
const std::unordered_map<std::string, TensorShape>& input_shape_hints) {
CAFFE_ENFORCE(ws);
auto shape_hints_ordered =
SsaRewriteAndMapNames(ws, pred_net, input_shape_hints);
Workspace mapped_ws(ws, input_mapping_);
auto shape_hints = InferShapes(&mapped_ws, pred_net, &shape_hints_ordered);
CAFFE_ENFORCE(pred_net, "Predict net cannot be nullptr");
onnx::OnnxExporter exporter(nullptr);
tensorrt::TrtLogger logger;
auto trt_builder = tensorrt::TrtObject(nvinfer1::createInferBuilder(logger));
auto trt_network = tensorrt::TrtObject(trt_builder->createNetwork());
auto importer =
tensorrt::TrtObject(nvonnxparser::createParser(*trt_network, logger));
// function to tell whether TensorRT supports a given C2 op or not
auto supports =
[&exporter, &shape_hints, importer](const caffe2::OperatorDef& op) {
const OpSchema* schema = OpSchemaRegistry::Schema(op.type());
if (!schema || schema->onnx_schema().empty()) {
LOG(INFO) << "Cannot export c2 op " << op.type() << " to onnx";
return false;
}
auto results = exporter.Caffe2OpToOnnxNodes(op, shape_hints);
for (const auto& n : results.first) {
if (!importer->supportsOperator(n.op_type().c_str())) {
LOG(INFO) << "TRT does not support ONNX node " << n.op_type();
return false;
}
}
return true;
};
// function to convert runnable subgraph into a trt op. Note that to keep the
// interface clean, we do the double conversion from C2 op to Onnx ops here
// but it should be OK as the cost is really small. We also need to keep the
// same exporter throughout the process to avoid duplicated dummy name
// generation
onnx::OnnxExporter exporter2(nullptr);
auto trt_converter = [this, &mapped_ws, &shape_hints, &exporter2](
const caffe2::NetDef& net) mutable {
return SubnetToTrtOp(net, &mapped_ws, &exporter2, &shape_hints);
};
auto cutResult = opt::OptimizeForBackend(*pred_net, supports, trt_converter)
NetDef net_opt = std::move(cutResult.net);
// Need to figure out a proper place to handle device option
net_opt.mutable_device_option()->CopyFrom(pred_net->device_option());
pred_net->Swap(&net_opt);
if (build_serializable_op_) {
PruneUnusedWeights(ws, *pred_net);
}
}
} // namespace caffe2
|