File: tensorrt_tranformer.cc

package info (click to toggle)
pytorch 1.13.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 139,252 kB
  • sloc: cpp: 1,100,274; python: 706,454; ansic: 83,052; asm: 7,618; java: 3,273; sh: 2,841; javascript: 612; makefile: 323; xml: 269; ruby: 185; yacc: 144; objc: 68; lex: 44
file content (533 lines) | stat: -rw-r--r-- 18,044 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
#include "caffe2/contrib/tensorrt/tensorrt_tranformer.h"

#include <iostream>
#include <unordered_set>

#include <NvInfer.h>
#include <onnx2trt.hpp>

#include "onnx/proto_utils.h"

#include "caffe2/contrib/tensorrt/trt_utils.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/operator.h"
#include "caffe2/onnx/onnx_exporter.h"
#include "caffe2/opt/backend_cutting.h"

namespace caffe2 {

namespace {

// TODO(yinghai): Remove the awkward conversion between unordered_map and map
std::unordered_map<std::string, TensorShape> InferShapes(
    Workspace* ws,
    NetDef* pred_net,
    CaffeMap<std::string, TensorShape>* shape_hints_ordered) {
  // Populate shapes from workplace
  const std::vector<string>& ws_blobs = ws->Blobs();
  for (const auto& s : ws_blobs) {
    shape_hints_ordered->emplace(s, GetTensorShapeOfBlob(ws->GetBlob(s)));
  }

  std::vector<NetDef*> nets;
  nets.emplace_back(pred_net);
  InferBlobShapesAndTypes(*shape_hints_ordered, nets);
  std::unordered_map<std::string, TensorShape> shape_hints;
  for (const auto& kv : *shape_hints_ordered) {
    shape_hints.emplace(kv.first, kv.second);
  }

  return shape_hints;
}

void DumpModel(const ::ONNX_NAMESPACE::ModelProto& model, const std::string& fname) {
  std::ofstream ff(fname);
  ff << ::ONNX_NAMESPACE::ProtoDebugString(model) << std::endl;
  ff.close();
}

void CPUTensorToTensorProto(
    const TensorCPU& cpu_tensor,
    ::ONNX_NAMESPACE::TensorProto* t) {
  const auto len = cpu_tensor.size();
  if (cpu_tensor.template IsType<float>()) {
    t->set_data_type(::ONNX_NAMESPACE::TensorProto::FLOAT);
    const float* data = cpu_tensor.template data<float>();
    for (auto i = 0; i < len; ++i) {
      t->add_float_data(*data++);
    }
  } else if (cpu_tensor.template IsType<int64_t>()) {
    t->set_data_type(::ONNX_NAMESPACE::TensorProto::INT64);
    const int64_t* data = cpu_tensor.template data<int64_t>();
    for (auto i = 0; i < len; ++i) {
      t->add_int64_data(*data++);
    }
  } else if (cpu_tensor.template IsType<int32_t>()) {
    t->set_data_type(::ONNX_NAMESPACE::TensorProto::INT32);
    const int32_t* data = cpu_tensor.template data<int32_t>();
    for (auto i = 0; i < len; ++i) {
      t->add_int32_data(*data++);
    }
  } else {
    CAFFE_THROW(
        "Don't know how to convert workspace tensor type ",
        cpu_tensor.meta().name(),
        " to ONNX TensorProto");
  }
}

void BlobToTensorProto(
    const std::string& name,
    Workspace* ws,
    CUDAContext* context,
    ::ONNX_NAMESPACE::TensorProto* t) {
  // Set name
  t->set_name(name);
  const Blob* blob = ws->GetBlob(name);
  CAFFE_ENFORCE(blob, "Blob ", name, " doesn't exist");

  // Set dims
  const auto shape = GetTensorShapeOfBlob(blob);
  for (const auto i : shape.dims()) {
    t->add_dims(i);
  }

  // Set values
  if (BlobIsTensorType(*blob, CPU)) {
    const auto& cpu_tensor = blob->template Get<TensorCPU>();
    CPUTensorToTensorProto(cpu_tensor, t);
  } else if (BlobIsTensorType(*blob, CUDA)) {
    const auto& cuda_tensor = blob->template Get<TensorCUDA>();
    const auto cpu_tensor = TensorCPU(cuda_tensor, CPU);
    context->FinishDeviceComputation();
    CPUTensorToTensorProto(cpu_tensor, t);
  } else {
    CAFFE_THROW(
        "Initialization blob ",
        name,
        " needs to be either TensorCPU or TensorCUDA");
  }
}

std::vector<::ONNX_NAMESPACE::ValueInfoProto> ConvertToValueInfo(
    const std::vector<std::string>& names,
    const std::unordered_map<std::string, TensorShape>& shape_hints) {
  std::vector<::ONNX_NAMESPACE::ValueInfoProto> r;
  for (const auto& s : names) {
    r.emplace_back();
    auto& value_info = r.back();
    value_info.set_name(s);
    const auto it = shape_hints.find(s);
    if (it == shape_hints.end()) {
      LOG(WARNING) << "Cannot get shape of " << s;
    } else {
      auto* tensor_type = value_info.mutable_type()->mutable_tensor_type();
      tensor_type->set_elem_type(
          ::ONNX_NAMESPACE::TensorProto_DataType::TensorProto_DataType_FLOAT);
      auto* shape = tensor_type->mutable_shape();
      for (int i = 0; i < it->second.dims().size(); ++i) {
        auto* dim = shape->add_dim();
        dim->set_dim_value(it->second.dims(i));
      }
    }
  }
  return r;
}

void FillModelInfo(::ONNX_NAMESPACE::ModelProto* model) {
  model->set_ir_version(::ONNX_NAMESPACE::Version::IR_VERSION);
  model->set_producer_name("caffe2");
  auto* opset_id = model->add_opset_import();
  opset_id->set_domain("");
  opset_id->set_version(7);
}
} // namespace

void BuildInitializationList(
    Workspace* ws,
    ::ONNX_NAMESPACE::GraphProto* g,
    std::unordered_set<std::string>* initialization_list) {
  const std::vector<string>& ws_blobs = ws->Blobs();

  // Create a CUDA context and reuse it for potential tensor copies across
  // devices
  CUDAContext context;

  for (const auto& s : ws_blobs) {
    auto it = initialization_list->find(s);
    if (it != initialization_list->end()) {
      auto* init_tensor = g->add_initializer();
      BlobToTensorProto(s, ws, &context, init_tensor);
      initialization_list->erase(it);
    }
  }
  CAFFE_ENFORCE(
      initialization_list->empty(), "Unfulfilled initialization list");
  for (const auto& t : g->initializer()) {
    VLOG(2) << "Initializer: " << t.name();
  }
}

void TensorRTTransformer::AddTrtOptions(
    OperatorDef* op,
    const std::unordered_map<std::string, std::vector<int>>&
        output_size_hints) {
  auto* max_batch_size_arg = op->add_arg();
  max_batch_size_arg->set_name("max_batch_size");
  max_batch_size_arg->set_i(max_batch_size_);

  auto* verbosity_arg = op->add_arg();
  verbosity_arg->set_name("log_verbosity");
  verbosity_arg->set_i(verbosity_);

  for (int i = 0; i < op->output_size(); ++i) {
    const auto& o = op->output(i);
    const auto it = output_size_hints.find(o);
    if (it != output_size_hints.end()) {
      const auto& dims = it->second;
      auto* output_size_hint_arg = op->add_arg();
      output_size_hint_arg->set_name(c10::str("output_size_hint_", i));
      for (const auto& d : dims) {
        output_size_hint_arg->add_ints(d);
      }

      LOG(INFO) << "Adding output hint: " << o;
    }
  }
}

OperatorDef TensorRTTransformer::BuildTrtOpLazy(
    const std::string& onnx_model_str,
    const std::unordered_map<std::string, std::vector<int>>& output_size_hints,
    const std::unordered_set<std::string>& initialization_list,
    const caffe2::NetDef& net) {
  OperatorDef op;
  op.set_type("TensorRT");
  auto* onnx_model_arg = op.add_arg();
  onnx_model_arg->set_name("onnx_model");
  onnx_model_arg->set_s(onnx_model_str);

  // Add the names of the initializer blobs that we want to fetch from the
  // workspace later
  auto* initializers_arg = op.add_arg();
  initializers_arg->set_name("initializers");
  for (const auto& s : initialization_list) {
    initializers_arg->add_strings(s);
    initializers_arg->add_strings(input_mapping_.at(s));
  }

  // Add the input/output
  for (const auto& input : net.external_input()) {
    if (!initialization_list.count(input)) {
      op.add_input(input);
    }
  }
  for (const auto& output : net.external_output()) {
    op.add_output(output);
  }

  // Additional arguments for TRT builder
  auto* debug_builder_arg = op.add_arg();
  debug_builder_arg->set_name("debug_builder");
  debug_builder_arg->set_i(debug_builder_);
  auto* max_workspace_size_arg = op.add_arg();
  max_workspace_size_arg->set_name("max_workspace_size");
  max_workspace_size_arg->set_i(max_workspace_size_);
  AddTrtOptions(&op, output_size_hints);
  return op;
}

OperatorDef TensorRTTransformer::BuildTrtOp(
    const std::string& onnx_model_str,
    const std::unordered_map<std::string, std::vector<int>>& output_size_hints) {
  OperatorDef op;
  op.set_type("TensorRT");

  tensorrt::TrtLogger logger;
  auto trt_engine = tensorrt::BuildTrtEngine(
      onnx_model_str,
      &logger,
      max_batch_size_,
      max_workspace_size_,
      debug_builder_);

  // Set up inputs/outputs in the order of they appearnce in getNbBindings
  int num_bindings = trt_engine->getNbBindings();
  for (int b = 0; b < num_bindings; ++b) {
    const auto& name = trt_engine->getBindingName(b);
    if (trt_engine->bindingIsInput(b)) {
      op.add_input(name);
    } else {
      op.add_output(name);
    }
  }

  auto engine_plan = tensorrt::TrtObject(trt_engine->serialize());
  auto* serialized_engine_arg = op.add_arg();
  serialized_engine_arg->set_s("");
  serialized_engine_arg->set_name("backend_buffer");
  auto* s = serialized_engine_arg->mutable_s();
  s->assign((char*)engine_plan->data(), engine_plan->size());

  AddTrtOptions(&op, output_size_hints);

  return op;
}

NetDef TensorRTTransformer::SubnetToTrtOp(
    const caffe2::NetDef& net,
    Workspace* ws,
    onnx::OnnxExporter* exporter,
    std::unordered_map<std::string, TensorShape>* shape_hints) {
  ::ONNX_NAMESPACE::ModelProto onnx_model;
  FillModelInfo(&onnx_model);

  // Convert c2 ops to onnx ops, add const weights if there are any
  for (const auto& op : net.op()) {
    const auto results = exporter->Caffe2OpToOnnxNodes(op, *shape_hints);
    const auto& node_protos = results.first;
    for (const auto& n : node_protos) {
      onnx_model.mutable_graph()->add_node()->CopyFrom(n);
    }
    for (const auto& t : results.second) {
      VLOG(2) << "Adding extra init tensor: " << t.name();
      TensorShape shape;
      shape.mutable_dims()->CopyFrom(t.dims());
      shape_hints->emplace(t.name(), std::move(shape));
      ::ONNX_NAMESPACE::TensorProto tf;
      tf.set_name(t.name());
      tf.mutable_dims()->CopyFrom(t.dims());

      if (t.data_type() == ::ONNX_NAMESPACE::TensorProto::FLOAT) {
        tf.set_data_type(::ONNX_NAMESPACE::TensorProto::FLOAT);
        std::vector<int64_t> v;
        v.resize(t.raw_data().size() / sizeof(int64_t));
        memcpy(v.data(), t.raw_data().data(), t.raw_data().size());
        std::vector<float> vf;
        for (auto i : v) {
          vf.push_back(static_cast<float>(i));
        }
        tf.mutable_raw_data()->assign(
            reinterpret_cast<const char *>(vf.data()), sizeof(float) * vf.size());
      } else if (t.data_type() == ::ONNX_NAMESPACE::TensorProto::INT64) {
        tf.set_data_type(::ONNX_NAMESPACE::TensorProto::INT64);
        tf.mutable_raw_data()->assign(t.raw_data().data(), t.raw_data().size());
      } else {
        CAFFE_THROW("Unsupported tensor data type for conversion: ",
            t.data_type());
      }
      onnx_model.mutable_graph()->add_initializer()->CopyFrom(tf);
    }
  }

  // Convert outputs and compute output shape hints
  std::vector<std::string> io_names;
  for (const auto& output : net.external_output()) {
    io_names.emplace_back(output);
  }
  auto io_vec = ConvertToValueInfo(io_names, *shape_hints);
  std::unordered_map<std::string, std::vector<int>> output_shape_hints;
  for (const auto& i : io_vec) {
    onnx_model.mutable_graph()->add_output()->CopyFrom(i);
    auto ret = output_shape_hints.emplace(i.name(), std::vector<int>());
    auto& vec = ret.first->second;
    const auto it = shape_hints->find(i.name());
    CAFFE_ENFORCE(
        it != shape_hints->end(),
        "Cannot find shape info for output ",
        i.name());
    const auto& shape = it->second;
    for (int k = 0; k < shape.dims().size(); ++k) {
      vec.push_back(shape.dims(k));
    }
  }

  // Convert inputs and figure out weights
  std::unordered_set<std::string> weights;
  const std::vector<string>& ws_blobs = ws->Blobs();
  for (const auto& s : ws_blobs) {
    VLOG(2) << "Add weights: " << s;
    weights.emplace(s);
  }

  std::unordered_set<std::string> total_inputs;
  std::unordered_set<std::string> initialization_list;
  std::vector<std::string> total_inputs_vec;

  // Extra intermediate weights created during conversion
  for (const auto& extra_weight : onnx_model.graph().initializer()) {
    if (total_inputs.emplace(extra_weight.name()).second) {
      total_inputs_vec.emplace_back(extra_weight.name());
    }
  }
  // Boundary inputs, should not be weights
  std::unordered_set<std::string> boundary_inputs;
  for (const auto& i : net.external_input()) {
    boundary_inputs.emplace(i);
  }

  for (const auto& op : net.op()) {
    for (const auto& input : op.input()) {
      if (total_inputs.emplace(input).second && weights.count(input)) {
        // We add weights as inputs too
        total_inputs_vec.emplace_back(input);
        initialization_list.emplace(input);
        VLOG(2) << "Add input weights: " << input;
      } else if (boundary_inputs.count(input)) {
        VLOG(2) << "Adding boundary input: " << input;
        total_inputs_vec.emplace_back(input);
      }
    }
  }
  io_vec = ConvertToValueInfo(total_inputs_vec, *shape_hints);
  for (const auto& i : io_vec) {
    onnx_model.mutable_graph()->add_input()->CopyFrom(i);
  }

  // Debug stuff
  if (debug_builder_) {
    DumpModel(onnx_model, "debug.onnxtxt");
  }

  // Convert weights to initializing tensors if we are building serializable trt
  // op or defer it to construction time of trt op
  if (build_serializable_op_) {
    BuildInitializationList(
        ws, onnx_model.mutable_graph(), &initialization_list);
  }

  // Onnx model is ready. Call onnx-trt to convert to one trt c2 op
  std::string model_str;
  onnx_model.SerializeToString(&model_str);
  NetDef net_opt;
  auto* op = net_opt.add_op();
  if (build_serializable_op_) {
    *op = BuildTrtOp(model_str, output_shape_hints);
  } else {
    *op =
        BuildTrtOpLazy(model_str, output_shape_hints, initialization_list, net);
  }
  for (const auto& i : op->input()) {
    net_opt.add_external_input(i);
  }
  for (const auto& i : op->output()) {
    net_opt.add_external_output(i);
  }

  return net_opt;
}

CaffeMap<std::string, TensorShape> TensorRTTransformer::SsaRewriteAndMapNames(
    Workspace* ws,
    NetDef* pred_net,
    const std::unordered_map<std::string, TensorShape>& input_shape_hints) {
  input_mapping_ = onnx::SsaRewrite(nullptr, pred_net);
  std::unordered_map<std::string, std::string> input_reverse_mapping;
  std::vector<std::string> external_inputs;
  for (const auto kv : input_mapping_) {
    input_reverse_mapping.emplace(kv.second, kv.first);
    if (!ws->HasBlob(kv.second)) {
      external_inputs.emplace_back(kv.first);
    }
  }
  for (const auto& i : external_inputs) {
    input_mapping_.erase(i);
  }
  CaffeMap<std::string, TensorShape> shape_hints_ordered;
  for (const auto& kv : input_shape_hints) {
    const auto it = input_reverse_mapping.find(kv.first);
    if (it != input_reverse_mapping.end()) {
      LOG(INFO) << "Adding input hint: " << it->second;
      shape_hints_ordered.emplace(it->second, kv.second);
    } else {
      shape_hints_ordered.emplace(kv.first, kv.second);
    }
  }
  return shape_hints_ordered;
}

void TensorRTTransformer::PruneUnusedWeights(
    Workspace* ws,
    const NetDef& pred_net) {
  std::unordered_set<std::string> used_weights;
  for (const auto& op : pred_net.op()) {
    for (const auto& i : op.input()) {
      used_weights.emplace(i);
    }
  }

  for (const auto kv : input_mapping_) {
    // for weights that are not referenced anywhere, we remove it from the
    // original workspace
    if (!used_weights.count(kv.first)) {
      VLOG(2) << "Removing unused weight blob: " << kv.second << " ("
              << kv.first << ")";
      ws->RemoveBlob(kv.second);
    }
  }
}

// Cutting off the runnable part and replace with tensor ops. Asssume the nets
// were topologically sorted
void TensorRTTransformer::Transform(
    Workspace* ws,
    NetDef* pred_net,
    const std::unordered_map<std::string, TensorShape>& input_shape_hints) {
  CAFFE_ENFORCE(ws);
  auto shape_hints_ordered =
      SsaRewriteAndMapNames(ws, pred_net, input_shape_hints);
  Workspace mapped_ws(ws, input_mapping_);
  auto shape_hints = InferShapes(&mapped_ws, pred_net, &shape_hints_ordered);

  CAFFE_ENFORCE(pred_net, "Predict net cannot be nullptr");
  onnx::OnnxExporter exporter(nullptr);
  tensorrt::TrtLogger logger;
  auto trt_builder = tensorrt::TrtObject(nvinfer1::createInferBuilder(logger));
  auto trt_network = tensorrt::TrtObject(trt_builder->createNetwork());
  auto importer =
      tensorrt::TrtObject(nvonnxparser::createParser(*trt_network, logger));

  // function to tell whether TensorRT supports a given C2 op or not
  auto supports =
      [&exporter, &shape_hints, importer](const caffe2::OperatorDef& op) {
        const OpSchema* schema = OpSchemaRegistry::Schema(op.type());
        if (!schema || schema->onnx_schema().empty()) {
          LOG(INFO) << "Cannot export c2 op " << op.type() << " to onnx";
          return false;
        }

        auto results = exporter.Caffe2OpToOnnxNodes(op, shape_hints);
        for (const auto& n : results.first) {
          if (!importer->supportsOperator(n.op_type().c_str())) {
            LOG(INFO) << "TRT does not support ONNX node " << n.op_type();
            return false;
          }
        }
        return true;
      };

  // function to convert runnable subgraph into a trt op. Note that to keep the
  // interface clean, we do the double conversion from C2 op to Onnx ops here
  // but it should be OK as the cost is really small. We also need to keep the
  // same exporter throughout the process to avoid duplicated dummy name
  // generation
  onnx::OnnxExporter exporter2(nullptr);
  auto trt_converter = [this, &mapped_ws, &shape_hints, &exporter2](
                           const caffe2::NetDef& net) mutable {
    return SubnetToTrtOp(net, &mapped_ws, &exporter2, &shape_hints);
  };

  auto cutResult = opt::OptimizeForBackend(*pred_net, supports, trt_converter)
  NetDef net_opt = std::move(cutResult.net);

  // Need to figure out a proper place to handle device option
  net_opt.mutable_device_option()->CopyFrom(pred_net->device_option());
  pred_net->Swap(&net_opt);

  if (build_serializable_op_) {
    PruneUnusedWeights(ws, *pred_net);
  }
}

} // namespace caffe2