1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
|
#ifndef CAFFE2_CORE_COMMON_GPU_H_
#define CAFFE2_CORE_COMMON_GPU_H_
#include <assert.h>
#include <cuda.h>
#include <cuda_runtime.h>
#if !defined(USE_ROCM)
#ifdef __GNUC__
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic push
#endif
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif // __GNUC__
#endif // USE_ROCM
#include <cublas_v2.h>
#include <curand.h>
#include <driver_types.h>
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "c10/cuda/CUDAMacros.h"
#include "c10/cuda/CUDAMathCompat.h"
#include <c10/cuda/CUDAGuard.h>
#define CAFFE2_CUDA_EXPORT C10_EXPORT
// CAFFE2_CUDA_API gets translated to CAFFE2_HIP_API in hipify script, which
// causes a marco redefinition issue with the later definition of
// CAFFE2_HIP_API, so we exclude this definition when HIP is specified
#if !defined(USE_ROCM)
#define CAFFE2_CUDA_API TORCH_CUDA_CPP_API
#endif // USE_ROCM
//TODO: [ROCm] Need to remove this after CUDA->HIP mapping is updated.
#define CAFFE2_HIP_EXPORT C10_EXPORT
#define CAFFE2_HIP_API TORCH_HIP_API
// This is a macro defined for cuda fp16 support. In default, cuda fp16 is
// supported by NVCC 7.5, but it is also included in the Tegra X1 platform with
// a (custom?) NVCC 7.0. As a result, we would normally just check the cuda
// version here, but would also allow a use to pass in the flag
// CAFFE_HAS_CUDA_FP16 manually.
#ifndef CAFFE_HAS_CUDA_FP16
#define CAFFE_HAS_CUDA_FP16
#endif // CAFFE_HAS_CUDA_FP16
#ifdef CAFFE_HAS_CUDA_FP16
#include <cuda_fp16.h>
#endif
// cuda major revision number below which fp16 compute is not supoorted
#if !defined(USE_ROCM)
constexpr int kFp16CUDADevicePropMajor = 6;
#else
constexpr int kFp16CUDADevicePropMajor = 3;
#endif
// Re-enable strict aliasing diagnostic if it was disabled.
#if !defined(USE_ROCM)
#ifdef __GNUC__
#if __GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 6)
#pragma GCC diagnostic pop
#endif
#endif // __GNUC__
#endif // USE_ROCM
/**
* The maximum number of peers that each gpu can have when doing p2p setup.
* Currently, according to NVidia documentation, each device can support a
* system-wide maximum of eight peer connections.
* When Caffe2 sets up peer access resources, if we have more than 8 gpus,
* we will enable peer access in groups of 8.
*/
#define CAFFE2_CUDA_MAX_PEER_SIZE 8
namespace caffe2 {
#if !defined(USE_ROCM)
/**
* Empty class to identify TensorCore-based math
*/
class TensorCoreEngine {};
#endif // USE_ROCM
#if defined(CUDA_VERSION) && CUDA_VERSION >= 10000
#define CAFFE2_CUDA_PTRATTR_MEMTYPE type
#else
#define CAFFE2_CUDA_PTRATTR_MEMTYPE memoryType
#endif
/**
* A runtime function to report the cuda version that Caffe2 is built with.
*/
inline int CudaVersion() {
#if defined(USE_ROCM)
return ROCM_VERSION;
#else
return CUDA_VERSION;
#endif
}
/**
* Returns the number of devices.
*/
CAFFE2_CUDA_API int NumCudaDevices();
/**
* Check if the current running session has a cuda gpu present.
*
* Note that this is different from having caffe2 built with cuda. Building
* Caffe2 with cuda only guarantees that this function exists. If there are no
* cuda gpus present in the machine, or there are hardware configuration
* problems like an insufficient driver, this function will still return false,
* meaning that there is no usable GPU present.
*
* In the open source build, it is possible that Caffe2's GPU code is
* dynamically loaded, and as a result a library could be only linked to the
* CPU code, but want to test if cuda is later available or not. In this case,
* one should use HasCudaRuntime() from common.h.
*/
inline bool HasCudaGPU() {
return NumCudaDevices() > 0;
}
/**
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
*/
CAFFE2_CUDA_API int CaffeCudaGetDevice();
/**
* Gets the current GPU id. This is a simple wrapper around cudaGetDevice().
*/
CAFFE2_CUDA_API void CaffeCudaSetDevice(const int id);
/**
* Gets the GPU id that the current pointer is located at.
*/
CAFFE2_CUDA_API int GetGPUIDForPointer(const void* ptr);
/**
* Gets the device property for the given device. This function is thread safe.
* The initial run on this function is ~1ms/device; however, the results are
* cached so subsequent runs should be much faster.
*/
CAFFE2_CUDA_API const cudaDeviceProp& GetDeviceProperty(const int device);
/**
* Runs a device query function and prints out the results to LOG(INFO).
*/
CAFFE2_CUDA_API void DeviceQuery(const int deviceid);
/**
* Return a peer access pattern by returning a matrix (in the format of a
* nested vector) of boolean values specifying whether peer access is possible.
*
* This function returns false if anything wrong happens during the query of
* the GPU access pattern.
*/
CAFFE2_CUDA_API bool GetCudaPeerAccessPattern(vector<vector<bool>>* pattern);
/**
* Return the availability of TensorCores for math
*/
CAFFE2_CUDA_API bool TensorCoreAvailable();
/**
* Return a human readable cublas error string.
*/
CAFFE2_CUDA_API const char* cublasGetErrorString(cublasStatus_t error);
/**
* Return a human readable curand error string.
*/
CAFFE2_CUDA_API const char* curandGetErrorString(curandStatus_t error);
// CUDA: various checks for different function calls.
#define CUDA_ENFORCE(condition, ...) \
do { \
cudaError_t error = condition; \
CAFFE_ENFORCE_EQ( \
error, \
cudaSuccess, \
"Error at: ", \
__FILE__, \
":", \
__LINE__, \
": ", \
cudaGetErrorString(error), \
##__VA_ARGS__); \
} while (0)
#define CUDA_CHECK(condition) \
do { \
cudaError_t error = condition; \
CHECK(error == cudaSuccess) << cudaGetErrorString(error); \
} while (0)
#define CUDA_DRIVERAPI_ENFORCE(condition) \
do { \
CUresult result = condition; \
if (result != CUDA_SUCCESS) { \
const char* msg; \
cuGetErrorName(result, &msg); \
CAFFE_THROW("Error at: ", __FILE__, ":", __LINE__, ": ", msg); \
} \
} while (0)
#define CUDA_DRIVERAPI_CHECK(condition) \
do { \
CUresult result = condition; \
if (result != CUDA_SUCCESS) { \
const char* msg; \
cuGetErrorName(result, &msg); \
LOG(FATAL) << "Error at: " << __FILE__ << ":" << __LINE__ << ": " \
<< msg; \
} \
} while (0)
#define CUBLAS_ENFORCE(condition) \
do { \
cublasStatus_t status = condition; \
CAFFE_ENFORCE_EQ( \
status, \
CUBLAS_STATUS_SUCCESS, \
"Error at: ", \
__FILE__, \
":", \
__LINE__, \
": ", \
::caffe2::cublasGetErrorString(status)); \
} while (0)
#define CUBLAS_CHECK(condition) \
do { \
cublasStatus_t status = condition; \
CHECK(status == CUBLAS_STATUS_SUCCESS) \
<< ::caffe2::cublasGetErrorString(status); \
} while (0)
#define CURAND_ENFORCE(condition) \
do { \
curandStatus_t status = condition; \
CAFFE_ENFORCE_EQ( \
status, \
CURAND_STATUS_SUCCESS, \
"Error at: ", \
__FILE__, \
":", \
__LINE__, \
": ", \
::caffe2::curandGetErrorString(status)); \
} while (0)
#define CURAND_CHECK(condition) \
do { \
curandStatus_t status = condition; \
CHECK(status == CURAND_STATUS_SUCCESS) \
<< ::caffe2::curandGetErrorString(status); \
} while (0)
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x)
#define CUDA_2D_KERNEL_LOOP(i, n, j, m) \
for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
i += blockDim.x * gridDim.x) \
for (size_t j = blockIdx.y * blockDim.y + threadIdx.y; j < (m); \
j += blockDim.y * gridDim.y)
// The following helper functions are here so that you can write a kernel call
// when you are not particularly interested in maxing out the kernels'
// performance. Usually, this will give you a reasonable speed, but if you
// really want to find the best performance, it is advised that you tune the
// size of the blocks and grids more reasonably.
// A legacy note: this is derived from the old good Caffe days, when I simply
// hard-coded the number of threads and wanted to keep backward compatibility
// for different computation capabilities.
// For more info on CUDA compute capabilities, visit the NVidia website at:
// http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capabilities
// The number of cuda threads to use. Since work is assigned to SMs at the
// granularity of a block, 128 is chosen to allow utilizing more SMs for
// smaller input sizes.
// 1D grid
constexpr int CAFFE_CUDA_NUM_THREADS = 128;
// 2D grid
constexpr int CAFFE_CUDA_NUM_THREADS_2D_DIMX = 16;
constexpr int CAFFE_CUDA_NUM_THREADS_2D_DIMY = 16;
// The maximum number of blocks to use in the default kernel call. We set it to
// 4096 which would work for compute capability 2.x (where 65536 is the limit).
// This number is very carelessly chosen. Ideally, one would like to look at
// the hardware at runtime, and pick the number of blocks that makes most
// sense for the specific runtime environment. This is a todo item.
// 1D grid
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS = 4096;
// 2D grid
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMX = 128;
constexpr int CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMY = 128;
constexpr int kCUDAGridDimMaxX = 2147483647;
constexpr int kCUDAGridDimMaxY = 65535;
constexpr int kCUDAGridDimMaxZ = 65535;
/**
* @brief Compute the number of blocks needed to run N threads.
*/
inline int CAFFE_GET_BLOCKS(const int N) {
return std::max(
std::min(
(N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS,
CAFFE_MAXIMUM_NUM_BLOCKS),
// Use at least 1 block, since CUDA does not allow empty block
1);
}
/**
* @brief Compute the number of blocks needed to run N threads for a 2D grid
*/
inline dim3 CAFFE_GET_BLOCKS_2D(const int N, const int /* M */) {
dim3 grid;
// Not calling the 1D version for each dim to keep all constants as literals
grid.x = std::max(
std::min(
(N + CAFFE_CUDA_NUM_THREADS_2D_DIMX - 1) /
CAFFE_CUDA_NUM_THREADS_2D_DIMX,
CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMX),
// Use at least 1 block, since CUDA does not allow empty block
1);
grid.y = std::max(
std::min(
(N + CAFFE_CUDA_NUM_THREADS_2D_DIMY - 1) /
CAFFE_CUDA_NUM_THREADS_2D_DIMY,
CAFFE_MAXIMUM_NUM_BLOCKS_2D_DIMY),
// Use at least 1 block, since CUDA does not allow empty block
1);
return grid;
}
using CUDAGuard = c10::cuda::CUDAGuard;
template <typename T, int N>
struct SimpleArray {
T data[N];
};
constexpr int kCUDATensorMaxDims = 8;
#define DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_1(val, Func, T, ...) \
do { \
CAFFE_ENFORCE_LE(val, kCUDATensorMaxDims); \
switch (val) { \
case 1: { \
Func<T, 1>(__VA_ARGS__); \
break; \
} \
case 2: { \
Func<T, 2>(__VA_ARGS__); \
break; \
} \
case 3: { \
Func<T, 3>(__VA_ARGS__); \
break; \
} \
case 4: { \
Func<T, 4>(__VA_ARGS__); \
break; \
} \
case 5: { \
Func<T, 5>(__VA_ARGS__); \
break; \
} \
case 6: { \
Func<T, 6>(__VA_ARGS__); \
break; \
} \
case 7: { \
Func<T, 7>(__VA_ARGS__); \
break; \
} \
case 8: { \
Func<T, 8>(__VA_ARGS__); \
break; \
} \
default: { \
break; \
} \
} \
} while (false)
#define DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_2(val, Func, T1, T2, ...) \
do { \
CAFFE_ENFORCE_LE(val, kCUDATensorMaxDims); \
switch (val) { \
case 1: { \
Func<T1, T2, 1>(__VA_ARGS__); \
break; \
} \
case 2: { \
Func<T1, T2, 2>(__VA_ARGS__); \
break; \
} \
case 3: { \
Func<T1, T2, 3>(__VA_ARGS__); \
break; \
} \
case 4: { \
Func<T1, T2, 4>(__VA_ARGS__); \
break; \
} \
case 5: { \
Func<T1, T2, 5>(__VA_ARGS__); \
break; \
} \
case 6: { \
Func<T1, T2, 6>(__VA_ARGS__); \
break; \
} \
case 7: { \
Func<T1, T2, 7>(__VA_ARGS__); \
break; \
} \
case 8: { \
Func<T1, T2, 8>(__VA_ARGS__); \
break; \
} \
default: { \
break; \
} \
} \
} while (false)
#define DISPATCH_FUNCTION_BY_VALUE_WITH_TYPE_3(val, Func, T1, T2, T3, ...) \
do { \
CAFFE_ENFORCE_LE(val, kCUDATensorMaxDims); \
switch (val) { \
case 1: { \
Func<T1, T2, T3, 1>(__VA_ARGS__); \
break; \
} \
case 2: { \
Func<T1, T2, T3, 2>(__VA_ARGS__); \
break; \
} \
case 3: { \
Func<T1, T2, T3, 3>(__VA_ARGS__); \
break; \
} \
case 4: { \
Func<T1, T2, T3, 4>(__VA_ARGS__); \
break; \
} \
case 5: { \
Func<T1, T2, T3, 5>(__VA_ARGS__); \
break; \
} \
case 6: { \
Func<T1, T2, T3, 6>(__VA_ARGS__); \
break; \
} \
case 7: { \
Func<T1, T2, T3, 7>(__VA_ARGS__); \
break; \
} \
case 8: { \
Func<T1, T2, T3, 8>(__VA_ARGS__); \
break; \
} \
default: { \
break; \
} \
} \
} while (false)
} // namespace caffe2
#endif // CAFFE2_CORE_COMMON_GPU_H_
|