1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#include "caffe2/core/graph.h"
#include "caffe2/core/common.h"
#include "caffe2/core/logging.h"
#include "caffe2/core/net.h"
#include "caffe2/proto/caffe2_pb.h"
namespace caffe2 {
namespace transform {
Graph::Graph(const NetDef& net) : netdef_(net) {
nodes_.clear();
nodes_.resize(net.op_size());
// Copy over operators
for (int x = 0; x < net.op_size(); x++) {
node(x).op = net.op(x);
}
// For any blob, which operator was the last to write to it?
// In python, this is known as "versions".
std::unordered_map<string, int> edge_parent;
for (int i = 0; i < (int)nodes_.size(); i++) {
for (const string& blob : node(i).op.input()) {
auto it = edge_parent.find(blob);
if (it != edge_parent.end()) {
int j = it->second;
node(i).parents[j].push_back(blob);
node(j).children[i].push_back(blob);
} else {
external_input_.insert(blob);
}
}
for (const string& blob : node(i).op.output()) {
edge_parent[blob] = i;
}
}
// Traverse opposite direction to find external outputs
// For any blob, which operator was the last to read to from it?
std::unordered_map<string, int> edge_child;
for (int i = (int)nodes_.size() - 1; i >= 0; i--) {
for (const string& blob : node(i).op.output()) {
auto it = edge_child.find(blob);
if (it == edge_child.end()) {
external_output_.insert(blob);
}
}
for (const string& blob : node(i).op.input()) {
edge_child[blob] = i;
}
}
}
const std::vector<std::pair<string, int>> Graph::GetSubgraphInput(
const std::vector<int>& match) {
return GetSubgraphPerimeterHelper(true, match);
}
const std::vector<std::pair<string, int>> Graph::GetSubgraphOutput(
const std::vector<int>& match) {
return GetSubgraphPerimeterHelper(false, match);
}
// This helper function will either get:
// 1) a list for the blobs that write INTO a subgraph
// 2) a list of for the blobs that are written FROM a subgraph.
//
// The "from_children" flag determines if it is case 1 (true) or case 2 (false).
const std::vector<std::pair<string, int>> Graph::GetSubgraphPerimeterHelper(
bool from_children,
const std::vector<int>& match) {
std::vector<std::pair<string, int>> edge_list;
std::unordered_set<int> match_set(match.begin(), match.end());
for (int x = 0; x < (int)nodes_.size(); x++) {
if (!is_node_active(x)) {
continue;
}
if (!match_set.count(x)) { // x is not in subgraph
const auto& list = from_children ? node(x).children : node(x).parents;
for (const auto& edge : list) {
int parent = edge.first;
const auto& blobs = edge.second;
if (match_set.count(parent)) { // but has a parent that is in subgraph
for (const string& blob : blobs) {
// NOLINTNEXTLINE(modernize-use-emplace)
edge_list.push_back({blob, x});
}
}
}
}
}
// return the list in sorted order, to allow binary searching
std::sort(edge_list.begin(), edge_list.end());
return edge_list;
}
NetDef Graph::GetNetDef() {
std::vector<bool> visited(nodes_.size(), false);
// Copy over all the properties of the netdef we're based on
NetDef netdef = netdef_;
// But we're going to put in our own operators.
netdef.clear_op();
// Keeps track of the number of parents yet to be processed.
std::vector<int> unchecked_parent_count;
// We will perform a topological traversal on the nodes, but we will prefer
// nodes that come earlier in the execution order.
// This is a min-heap, which stores its elements in ascending order.
// This stores the nodes in the order we process them to be in.
// This guarantees the lowest lexicographical topological ordering.
// This also means the original nodes will be kept in their execution order.
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::priority_queue<int, std::vector<int>, std::greater<int>> q;
// In our graph, G, the nodes don't have a strict ordering. But in the netdef,
// they must (since nets are operators executed in some order).
// How do we make sure that the order of operators in our generated netdef
// is valid?
// 1) The ordering of the netdef must be topologically sorted, respect to G.
// If A -> B is an edge in the graph G, then A must come before B in the
// netdef's ordering.
// 2) No blob conflicts: If A -> B is an edge in the graph G, and A writes to
// blob X and B reads from blob X, then there cannot be an op that writes
// to blob X between A and B in the ordering.
//
// Perform a Topological Sort, to find an order for the Operators to be in.
// We will keep track of the number of parents each node has.
// We begin with an empty queue, and push in all nodes that do not have any
// parents. Then, we keep track of all unprocessed parents for each node.
// When a node has no more unprocessed parents, we can push it into the queue
// to be processed. This guarantees condition 1 is satisfied.
// TODO(benz): Currently, condition 2 is not guaranteed to be satisified.
// However, giving each blob unique names via SSA will satisfy this condition.
// Then, the resulting graph can be optimized with memonger.
for (int i = 0; i < (int)nodes_.size(); i++) {
unchecked_parent_count.push_back(node(i).parents.size());
if (node(i).parents.size() == 0 && is_node_active(i)) {
q.push(i);
visited[i] = true;
}
}
while (!q.empty()) {
int idx = q.top();
q.pop();
if (!is_node_active(idx)) {
continue;
}
// Creates a new OperatorDef in NetDef
auto& op = *(netdef.add_op());
// Sets it equal to the OperatorDef at node(idx)
op = node(idx).op;
for (const auto& edge : node(idx).children) {
int child = edge.first;
if (!visited[child] && is_node_active(child)) {
unchecked_parent_count[child]--;
if (unchecked_parent_count[child] == 0) {
q.push(child);
visited[child] = true;
}
}
}
}
return netdef;
}
void Graph::DeactivateSubgraph(std::vector<int> subgraph) {
for (int idx : subgraph) {
// remove all edges connected to inactive node
for (const auto& edge : node(idx).parents) {
int parent = edge.first;
node(parent).children.erase(idx);
}
for (const auto& edge : node(idx).children) {
int child = edge.first;
node(child).parents.erase(idx);
}
// actually mark flags as false
node(idx).active = false;
}
}
} // namespace transform
OperatorDef* AddOp(
NetDef* netdef_ptr,
string op_type,
std::vector<string> inputs,
std::vector<string> outputs) {
CHECK(netdef_ptr);
auto& netdef = *netdef_ptr;
auto op_ptr = netdef.add_op();
auto& op = *op_ptr;
op.set_type(op_type);
for (const string& inp : inputs) {
op.add_input(inp);
}
for (const string& outp : outputs) {
op.add_output(outp);
}
return op_ptr;
}
bool MatchStrings(string p, string s) {
if (p == "*") { // star accepts anything
return true;
}
// TODO(benz): memoize this. (high constant factor boost in performance)
vector<string> choices = split('|', p);
for (const string& candidate : choices) {
if (candidate == s) {
return true;
}
}
return false;
}
bool MatchArguments(const OperatorDef& p_op, const OperatorDef& g_op) {
for (const auto& p_arg : p_op.arg()) {
if (!p_arg.has_name()) {
continue;
}
bool found = false;
for (const auto& g_arg : g_op.arg()) {
if (p_arg.name() == g_arg.name()) {
found = true;
if (p_arg.has_f()) {
if (!g_arg.has_f() || p_arg.f() != g_arg.f()) {
return false;
}
}
if (p_arg.has_i()) {
if (!g_arg.has_i() || p_arg.i() != g_arg.i()) {
return false;
}
}
if (p_arg.has_s()) {
if (!g_arg.has_s() || !MatchStrings(p_arg.s(), g_arg.s())) {
return false;
}
}
if (p_arg.floats_size() != g_arg.floats_size()) {
return false;
}
for (int i = 0; i < p_arg.floats_size(); i++) {
if (p_arg.floats(i) != g_arg.floats(i)) {
return false;
}
}
if (p_arg.ints_size() != g_arg.ints_size()) {
return false;
}
for (int i = 0; i < p_arg.ints_size(); i++) {
if (p_arg.ints(i) != g_arg.ints(i)) {
return false;
}
}
if (p_arg.strings_size() != g_arg.strings_size()) {
return false;
}
for (int i = 0; i < p_arg.strings_size(); i++) {
if (!MatchStrings(p_arg.strings(i), g_arg.strings(i))) {
return false;
}
}
}
}
if (!found) {
return false;
}
}
return true;
}
} // namespace caffe2
|