1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
|
#include "caffe2/core/memonger.h"
#include <set>
#include <unordered_set>
#include "caffe2/utils/proto_utils.h"
namespace caffe2 {
void run_schema_check(const NetDef& net) {
for (auto& op : net.op()) {
auto* schema = OpSchemaRegistry::Schema(op.type());
if (schema) {
CAFFE_ENFORCE(
schema->Verify(op),
"Operator def did not pass schema checking: ",
ProtoDebugString(op));
}
}
}
namespace memonger {
NetDef optimize_inference_net(
const NetDef& net,
const std::set<string>& static_blobs) {
if (net.type() != "" && net.type() != "simple") {
LOG(INFO) << "Cannot optimize memory for nets of type: " << net.type();
return net;
}
// Memonger modifies the graph. Do an early schema check here to make sure
// the operators are valid
run_schema_check(net);
std::vector<OperatorDef> ops;
for (auto& op : net.op()) {
if (op.type() == "RecurrentNetwork") {
// NOTE: for subtleties of RNN op memonger, see memonger.py on how
// to deal with the forward/backward links etc.
LOG(INFO) << "Memonger does not support RecurrentNetwork yet";
return net;
}
ops.push_back(op);
}
// Step 1: count first and last operator for each blob
std::unordered_set<std::string> all_blobs;
std::unordered_map<std::string, std::pair<int, int>> ranges;
for (size_t i = 0; i < ops.size(); i++) {
for (auto& inp : ops[i].input()) {
if (ranges.find(inp) != ranges.end()) {
ranges[inp].second = i;
}
all_blobs.insert(inp);
}
for (auto& outp : ops[i].output()) {
all_blobs.insert(outp);
if (static_blobs.find(outp) != static_blobs.end()) {
continue;
}
if (ranges.find(outp) == ranges.end()) {
ranges[outp] = std::make_pair(i, i);
}
}
}
// Step 2: pass over ops and recycle
std::vector<std::string> free_blobs;
std::unordered_map<std::string, std::string> renaming;
std::unordered_map<std::string, std::string> mapping;
for (int i = 0; i < (int)ops.size(); i++) {
auto& op = ops[i];
std::unordered_set<std::string> new_free_blobs;
// Check if some input is used the last time, and release it
for (auto& inp : op.input()) {
auto rit = ranges.find(inp);
if (rit != ranges.end() && rit->second.second == i) {
if (mapping.find(inp) == mapping.end()) {
new_free_blobs.insert(inp);
mapping[inp] = inp;
// Safety check to prevent double-memongering nets.
string shared_blob =
"__m" + c10::to_string(renaming.size()) + "_shared";
if (all_blobs.find(shared_blob) != all_blobs.end()) {
LOG(INFO) << "Net was already memongered!";
return net;
}
renaming[inp] = shared_blob;
} else {
new_free_blobs.insert(mapping[inp]);
}
}
}
// Check if some output appears the first time, and see if we can replace it
// with a recycled blob.
for (auto& outp : op.output()) {
if (!free_blobs.empty()) {
// first use?
auto rit = ranges.find(outp);
if (rit != ranges.end() && rit->second.first == i) {
std::string recycled = free_blobs.back();
free_blobs.pop_back();
mapping[outp] = recycled;
}
}
}
// Add blobs released from this op to the pool.
for (auto& b : new_free_blobs) {
free_blobs.push_back(b);
}
}
// Step 3: rename inputs and outputs and create new net
NetDef optim_net = net;
optim_net.mutable_op()->Clear();
for (auto op : ops) {
for (int i = 0; i < op.input_size(); i++) {
auto& inp = op.input(i);
if (mapping.find(inp) != mapping.end()) {
op.set_input(i, renaming[mapping[inp]]);
}
}
for (int i = 0; i < op.output_size(); i++) {
auto& outp = op.output(i);
if (mapping.find(outp) != mapping.end()) {
op.set_output(i, renaming[mapping[outp]]);
}
}
auto* ao = optim_net.add_op();
ao->CopyFrom(op);
}
VLOG(1) << "optimized net using " << renaming.size() << " shared blobs";
return optim_net;
}
class ComputeBlobRecyclingForDag {
public:
explicit ComputeBlobRecyclingForDag(const int size)
: op_inputs_(size),
op_visited_count_(size),
op_token_deposit_(size),
op_visited_(size, false) {}
NetDef OptimizeNet(
const NetDef& net,
const std::vector<string>& heads,
const std::vector<int>& op_indices,
const std::unordered_set<string>& shareable_blob_names,
const string& namescope,
const std::unordered_set<string>& dont_share_blob_names,
const std::unordered_map<string, vector<int>>& blob_shapes) {
// Memonger modifies the graph. Do an early schema check here to make sure
// the operators are valid
run_schema_check(net);
// Construct the set of input blobs.
std::unordered_set<string> heads_blobs_set(heads.begin(), heads.end());
// Construct the set of output blobs we want to optimize.
// Blobs not eligible for sharing are filtered out
for (const int op_index : op_indices) {
for (const auto& output : net.op(op_index).output()) {
if (has_key(shareable_blob_names, output) && !has_key(dont_share_blob_names, output)) {
optim_op_outputs_.insert(output);
}
}
}
// Compute operators in degree (op_inputs_) and initialize how many ops are
// sharing input blobs (share_counts_).
// Note: We have to handle the cases where output blobs are shared.
std::unordered_map<string, int> blob_seen;
for (const int op_index : op_indices) {
for (const auto& input : net.op(op_index).input()) {
if (has_key(shareable_blob_names, input) ||
has_key(heads_blobs_set, input)) {
if (has_key(optim_op_outputs_, input)) {
CAFFE_ENFORCE(
blob_seen.find(input) != blob_seen.end(),
"Input ",
input,
" was not output by an op before");
op_inputs_[op_index] += blob_seen[input];
} else {
share_counts_[input] = 1;
}
blob_to_ops_[input].push_back(op_index);
}
}
for (const auto& output : net.op(op_index).output()) {
blob_seen[output] += 1;
blob_device_[output] = net.op(op_index).device_option();
// Exception for CopyGPUToCPU that has
// cuda device option but whose inputs/outputs are on CPU
if (net.op(op_index).type() == "CopyGPUToCPU") {
blob_device_[output].set_device_type(0);
blob_device_[output].set_device_id(0);
}
}
}
// The main recursive call. Here we do start DFS in the operator graph
// from the input blobs. Note that the input ordering does not indicate
// operator graph ordering. To avoid traversing children operators first,
// traversal begins from root ops and then recursively children ops are
// visited.
for (const auto& input_blob : heads) {
for (const int op_index : blob_to_ops_[input_blob]) {
if (!op_visited_[op_index] && !op_inputs_[op_index]) {
vector<std::pair<int, string>> free_blobs;
std::unordered_set<int> tokens{tokens_counter_++};
process_op(
net,
shareable_blob_names,
namescope,
dont_share_blob_names,
blob_shapes,
op_index,
&free_blobs,
&tokens);
}
}
}
// Rename mapped blobs.
std::unordered_map<string, string> renamed;
int name_idx = 0;
std::unordered_set<string> mapped_blobs_set;
for (const auto& mapped_blob : mapping_) {
mapped_blobs_set.insert(mapped_blob.second);
if (has_key(optim_op_outputs_, mapped_blob.second)) {
if (renamed.find(mapped_blob.second) == renamed.end()) {
renamed.insert(
{mapped_blob.second,
namescope + "__m" + c10::to_string(name_idx++) + "_shared"});
}
} else {
renamed.insert({mapped_blob.second, mapped_blob.second});
}
}
// Recursively rename mapped_blobs.
mapping_.insert(renamed.begin(), renamed.end());
bool had_changes = true;
while (had_changes) {
had_changes = false;
for (const auto& mapped_blob : mapping_) {
if (has_key(renamed, mapped_blob.second) &&
renamed[mapped_blob.second] != mapped_blob.second) {
renamed[mapped_blob.first] = renamed[mapped_blob.second];
mapping_[mapped_blob.first] = renamed[mapped_blob.first];
}
}
}
NetDef optimized_net = apply_assignments(net);
LOG(INFO) << "Remapping " << mapping_.size() << " using "
<< mapped_blobs_set.size() << " shared blobs.";
if (floats_saved_ > 0) {
LOG(INFO) << "Memonger saved approximately : "
<< (floats_saved_ * 4.0 / 1024.0 / 1024.0) << " MB.";
}
return optimized_net;
}
private:
NetDef apply_assignments(const NetDef& net) {
NetDef optimized_net = net;
// Rename optimized_net blobs.
for (int i = 0; i < optimized_net.op_size(); ++i) {
// Special handling for RNNs, which have internal nets that
// can refer to memongered blobs
if (optimized_net.op(i).type().find("RecurrentNetwork") == 0) {
apply_recurrent_blob_assignments(optimized_net.mutable_op(i));
}
// Special handling for AsyncIf ops, where internal nets can
// refer to memongered blobs
if (optimized_net.op(i).type() == "AsyncIf") {
apply_asyncif_blob_assignments(optimized_net.mutable_op(i));
}
for (int j = 0; j < optimized_net.op(i).input_size(); ++j) {
const string& input_name =
get_blob_or_mapped_blob(optimized_net.op(i).input(j));
optimized_net.mutable_op(i)->set_input(j, input_name);
}
for (int j = 0; j < optimized_net.op(i).output_size(); ++j) {
auto output_name =
get_blob_or_mapped_blob(optimized_net.op(i).output(j));
optimized_net.mutable_op(i)->set_output(j, output_name);
}
}
return optimized_net;
}
void apply_recurrent_blob_assignments(OperatorDef* op) {
// Recursively map stepnets in RecurrentNetworks, and
// attach a mapping table
for (int i = 0; i < op->arg_size(); i++) {
Argument* arg = op->mutable_arg(i);
const string& name = arg->name();
if (name == "step_net" || name == "backward_step_net") {
if (arg->has_n()) {
NetDef* step_net_ref = arg->mutable_n();
CAFFE_ENFORCE(
!arg->has_s(),
"Invalid definition for ",
name,
". Only one of NetDef and string should be present");
NetDef optimized_net = apply_assignments(*step_net_ref);
step_net_ref->CopyFrom(optimized_net);
} else {
NetDef step_net;
CAFFE_ENFORCE(
TextFormat::ParseFromString(
arg->s(), &step_net),
"Could not parse step net:",
name);
step_net = apply_assignments(step_net);
arg->set_s(ProtoDebugString(step_net));
}
}
}
// Store renamings
vector<string> inputs_outputs(op->input().begin(), op->input().end());
inputs_outputs.insert(
inputs_outputs.end(), op->output().begin(), op->output().end());
for (auto& b : inputs_outputs) {
string mapped = get_blob_or_mapped_blob(b);
if (b != mapped) {
Argument* map_arg = op->add_arg();
map_arg->set_name(b + ".rename");
map_arg->set_s(mapped);
}
}
}
void apply_asyncif_blob_assignments(OperatorDef* op) {
for (int i = 0; i < op->arg_size(); i++) {
Argument* arg = op->mutable_arg(i);
const string& name = arg->name();
if (name == "then_net" || name == "else_net") {
NetDef* step_net_ref = arg->mutable_n();
NetDef optimized_net = apply_assignments(*step_net_ref);
// update external inputs and outputs mappings as well
// for this internal net
std::vector<string> optim_external_inputs;
for (auto& blob_name : optimized_net.external_input()) {
optim_external_inputs.push_back(get_blob_or_mapped_blob(blob_name));
}
optimized_net.mutable_external_input()->Clear();
for (const auto& blob_name : optim_external_inputs) {
optimized_net.add_external_input(blob_name);
}
std::vector<string> optim_external_outputs;
for (auto& blob_name : optimized_net.external_output()) {
optim_external_outputs.push_back(get_blob_or_mapped_blob(blob_name));
}
optimized_net.mutable_external_output()->Clear();
for (const auto& blob_name : optim_external_outputs) {
optimized_net.add_external_output(blob_name);
}
step_net_ref->CopyFrom(optimized_net);
}
}
}
template <typename K, typename V>
inline bool has_key(const std::unordered_map<K, V>& in_map, const K& key) {
return in_map.find(key) != in_map.end();
}
template <typename K>
inline bool has_key(const std::unordered_set<K>& in_set, const K& key) {
return in_set.find(key) != in_set.end();
}
void process_op(
const NetDef& net,
const std::unordered_set<string>& shareable_blob_names,
const string& namescope,
const std::unordered_set<string>& dont_share_blob_names,
const std::unordered_map<string, vector<int>>& blob_shapes,
int op_index,
std::vector<std::pair<int, string>>* free_blobs,
std::unordered_set<int>* tokens) {
// The tokens we have now is the union of current tokens operator is holding
// and tokens pushed from parents.
tokens->insert(
op_token_deposit_[op_index].begin(), op_token_deposit_[op_index].end());
op_token_deposit_[op_index].clear();
CAFFE_ENFORCE(!op_visited_[op_index]);
op_visited_[op_index] = true;
const OperatorDef& current_op = net.op(op_index);
// The set of freed input blobs by processing current op.
std::vector<std::pair<int, string>> new_free_blobs;
std::unordered_set<string> new_free_blobs_set;
// Now update blob tokens.
for (const auto& input : current_op.input()) {
const auto& actual_blob = get_blob_or_mapped_blob(input);
req_tokens_[actual_blob].insert(tokens->begin(), tokens->end());
if (actual_blob != input) {
req_tokens_[input].insert(tokens->begin(), tokens->end());
}
}
for (const auto& output : current_op.output()) {
const auto& actual_blob = get_blob_or_mapped_blob(output);
req_tokens_[actual_blob].insert(tokens->begin(), tokens->end());
if (actual_blob != output) {
req_tokens_[output].insert(tokens->begin(), tokens->end());
}
}
// Increment blob count and check if we can free input blobs.
for (const auto& input : current_op.input()) {
if (has_key(shareable_blob_names, input)) {
blob_input_count_[input]++;
if (blob_input_count_[input] == (int)blob_to_ops_[input].size()) {
const string& actual_blob = get_blob_or_mapped_blob(input);
if (!has_key(dont_share_blob_names, actual_blob)) {
new_free_blobs.emplace_back(
-share_counts_[actual_blob], actual_blob);
new_free_blobs_set.insert(actual_blob);
}
}
}
}
// Check if we can recycle free blobs and use it as output blob.
for (const auto& output : current_op.output()) {
if (has_key(shareable_blob_names, output) &&
!has_key(processed_output_blobs_, output) &&
!has_key(new_free_blobs_set, output)) {
const string freed_blob = get_free_blob(
output, blob_shapes, tokens, free_blobs, blob_device_[output]);
if (freed_blob != "") {
req_tokens_[freed_blob].insert(tokens->begin(), tokens->end());
share_counts_[freed_blob]++;
mapping_[output] = freed_blob;
}
processed_output_blobs_.insert(output);
}
}
// Insert new freed blobs.
std::unordered_set<string> free_blob_set;
for (const auto& free_blob : *free_blobs) {
free_blob_set.insert(free_blob.second);
}
for (const auto& new_free_blob : new_free_blobs) {
if (!has_key(free_blob_set, new_free_blob.second)) {
free_blobs->push_back(new_free_blob);
if (blob_shapes.size() > 0) {
if (!has_key(blob_sizes_, new_free_blob.second)) {
blob_sizes_.insert(
{new_free_blob.second,
infer_blob_size(new_free_blob.second, blob_shapes)});
}
}
std::push_heap(
free_blobs->begin(),
free_blobs->end(),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::greater<std::pair<int, string>>());
}
}
int num_branches = 0;
for (const auto& output : current_op.output()) {
num_branches += blob_to_ops_[output].size();
}
for (const auto& output : current_op.output()) {
for (const auto& input_op_index : blob_to_ops_[output]) {
op_visited_count_[input_op_index]++;
if (op_visited_count_[input_op_index] == op_inputs_[input_op_index]) {
std::unordered_set<int> new_tokens;
new_tokens.insert(tokens->begin(), tokens->end());
if (num_branches > 1) {
new_tokens.insert(tokens_counter_++);
}
process_op(
net,
shareable_blob_names,
namescope,
dont_share_blob_names,
blob_shapes,
input_op_index,
free_blobs,
&new_tokens);
} else {
if (!op_visited_[input_op_index]) {
op_token_deposit_[input_op_index].insert(
tokens->begin(), tokens->end());
}
}
}
}
}
inline int infer_blob_size(
const string& blob_name,
const std::unordered_map<string, vector<int>>& blob_shapes) {
const auto& blob_shapes_iter = blob_shapes.find(blob_name);
if (blob_shapes_iter == blob_shapes.end()) {
return 0;
}
int size = 1;
// NOLINTNEXTLINE(modernize-loop-convert)
for (size_t i = 0; i < blob_shapes_iter->second.size(); ++i) {
size *= blob_shapes_iter->second[i];
}
return size;
}
inline string get_blob_or_mapped_blob(const string& blob_name) {
auto mapped_blob = mapping_.find(blob_name);
if (mapped_blob == mapping_.end()) {
return blob_name;
} else {
return mapped_blob->second;
}
}
// Returns true if the op that generates that blob acquires all tokens.
inline bool can_use_blob(
const string& blob_name,
std::unordered_set<int>* tokens,
const DeviceOption& device_option) {
const DeviceOption& blob_device = blob_device_[blob_name];
if (device_option.device_type() != blob_device.device_type() ||
device_option.device_id() != blob_device.device_id()) {
return false;
}
for (const int token : req_tokens_[blob_name]) {
if (tokens->find(token) == tokens->end()) {
return false;
}
}
return true;
};
// Returns the name of the blob that we are going to map blob_name into.
inline string get_free_blob(
const string& blob_name,
const std::unordered_map<string, vector<int>>& blob_shapes,
std::unordered_set<int>* tokens,
std::vector<std::pair<int, string>>* free_blobs,
const DeviceOption& device) {
string freed_blob = "";
if (blob_shapes.size() == 0) {
std::vector<std::pair<int, string>> cant_use_blobs;
while (free_blobs->size() > 0) {
std::pop_heap(
free_blobs->begin(),
free_blobs->end(),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::greater<std::pair<int, string>>());
const auto cand_free_blob = free_blobs->back();
free_blobs->pop_back();
if (can_use_blob(cand_free_blob.second, tokens, device)) {
freed_blob = cand_free_blob.second;
break;
} else {
cant_use_blobs.push_back(cand_free_blob);
}
}
for (const auto& cant_use_blob : cant_use_blobs) {
free_blobs->push_back(cant_use_blob);
std::push_heap(
free_blobs->begin(),
free_blobs->end(),
// NOLINTNEXTLINE(modernize-use-transparent-functors)
std::greater<std::pair<int, string>>());
}
} else {
// Heuristic to choose the largest blob to fit output thats
// slightly less than blob_size.
const int blob_size = infer_blob_size(blob_name, blob_shapes);
int best_size = -1;
int free_blob_index = -1;
for (size_t i = 0; i < free_blobs->size(); ++i) {
const string& cb_name = (*free_blobs)[i].second;
if (can_use_blob(cb_name, tokens, device)) {
const int cand_bz = blob_sizes_[cb_name];
CAFFE_ENFORCE(blob_sizes_.find(cb_name) != blob_sizes_.end());
if (cand_bz >= best_size) {
if (best_size < blob_size || best_size >= cand_bz) {
best_size = cand_bz;
free_blob_index = i;
}
}
}
}
if (free_blob_index != -1) {
floats_saved_ += best_size;
freed_blob = (*free_blobs)[free_blob_index].second;
free_blobs->erase(free_blobs->begin() + free_blob_index);
}
}
return freed_blob;
};
int tokens_counter_ = 1;
int floats_saved_ = 0;
// blob_name -> Op edges.
std::unordered_map<string, std::vector<int>> blob_to_ops_;
// Current Op in degree.
std::unordered_map<string, int> blob_input_count_;
// Op in degree.
std::vector<int> op_inputs_;
// Current Op visit counts.
std::vector<int> op_visited_count_;
std::unordered_map<string, int> share_counts_;
std::unordered_map<string, int> blob_sizes_;
std::unordered_map<string, std::unordered_set<int>> req_tokens_;
std::vector<std::unordered_set<int>> op_token_deposit_;
std::unordered_set<string> optim_op_outputs_;
std::unordered_map<string, string> mapping_;
std::unordered_map<string, DeviceOption> blob_device_;
// The set of output blobs we already processed.
std::unordered_set<string> processed_output_blobs_;
std::vector<bool> op_visited_;
};
NetDef compute_blob_recycling_for_dag(
const NetDef& net,
const std::vector<string>& heads,
const std::vector<int>& op_indices,
const std::unordered_set<string>& shareable_blob_names,
const string& namescope,
const std::unordered_set<string>& dont_share_blob_names,
const std::unordered_map<string, vector<int>>& blob_shapes) {
ComputeBlobRecyclingForDag memonger(net.op_size());
return memonger.OptimizeNet(
net,
heads,
op_indices,
shareable_blob_names,
namescope,
dont_share_blob_names,
blob_shapes);
}
} // memonger
} // caffe2
|